Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Defects in atomically thin semiconductor emit single photons
by Staff Writers
Rochester NY (SPX) May 05, 2015


File image.

Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for the integration of quantum photonics with solid-state electronics - a combination known as integrated photonics.

Scientists have become interested in integrated solid-state devices for quantum information processing uses. Quantum dots in atomically thin semiconductors could not only provide a framework to explore the fundamental physics of how they interact, but also enable nanophotonics applications, the researchers say.

Quantum dots are often referred to as artificial atoms. They are artificially engineered or naturally occurring defects in solids that are being studied for a wide range of applications. Nick Vamivakas, assistant professor of optics at the University of Rochester and senior author on the paper, adds that atomically thin, 2D materials, such as graphene, have also generated interest among scientists who want to explore their potential for optoelectronics. However, until now, optically active quantum dots have not been observed in 2D materials.

In a paper published in Nature Nanotechnology this week, the Rochester researchers show how tungsten diselenide (WSe2) can be fashioned into an atomically thin semiconductor that serves as a platform for solid-state quantum dots. Perhaps most importantly the defects that create the dots do not inhibit the electrical or optical performance of the semiconductor and they can be controlled by applying electric and magnetic fields.

Vamivakas explains that the brightness of the quantum dot emission can be controlled by applying the voltage. He adds that the next step is to use voltage to "tune the color" of the emitted photons, which can make it possible to integrate these quantum dots with nanophotonic devices.

A key advantage is how much easier it is to create quantum dots in atomically thin tungsten diselenide compared to producing quantum dots in more traditional materials like indium arsenide.

"We start with a black crystal and then we peel layers of it off until we have an extremely thin later left, an atomically thin sheet of tungsten diselenide," said Vamivakas.

The researchers take two of these atomically thin sheets and lay one over the other one. At the point where they overlap, a quantum dot is created. The overlap creates a defect in the otherwise smooth 2D sheet of semiconductor material. The extremely thin semiconductors are much easier to integrate with other electronics.

The quantum dots in tungsten diselenide also possess an intrinsic quantum degree of freedom - the electron spin. This is a desirable property as the spin can both act as a store of quantum information as well as provide a probe of the local quantum dot environment.

"What makes tungsten diselenide extremely versatile is that the color of the single photons emitted by the quantum dots is correlated with the quantum dot spin," said first author Chitraleema Chakraborty. Chakraborty added that the ease with which the spins and photons interact with one another should make these systems ideal for quantum information applications as well as nanoscale metrology.

The paper, "Voltage controlled quantum light from an atomically thin semiconductor," was published online by Nature Nanotechnology on May 4, 2015. Apart from Vamivakas and Chakraborty, the team also included Laura Kinnischtzke, Kenneth M. Goodfellow, and Ryan Beams from the University of Rochester.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Rochester
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Two-dimensional semiconductor comes clean
New York NY (SPX) May 03, 2015
In 2013 James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, and colleagues at Columbia demonstrated that they could dramatically improve the performance of graphene--highly conducting two-dimensional (2D) carbon--by encapsulating it in boron nitride (BN), an insulating material with a similar layered structure. In work published this week in the Advance O ... read more


CHIP TECH
Norway plans to slash subsidies to fur farms

Pesticides alter bees' brains

Organic farming techniques can make agriculture a carbon sink

Simulating seasons

CHIP TECH
Two-dimensional semiconductor comes clean

Researchers develop acoustically driven controls for smartphones

Printing silicon on paper, with lasers

From metal to insulator and back again

CHIP TECH
Boeing supplying P-9A training gear to U.S. Navy, Australia

India defence minister wants swift deal on French Rafale jets

France, India pledge swift conclusion to fighter jet deal

French leader oversees Qatar jet deal, to attend Gulf summit

CHIP TECH
Germany's Daimler unveils 'world first' self-driving truck

More than 200,000 road deaths a year in China: WHO

Uber office raided in southern China: report

Vehicle cost, lack of information hinder purchases of plug-in electric vehicles

CHIP TECH
Germany's Siemens acknowledges China examination

Taiwan ruling party 'optimistic' over joining AIIB

Siemens, Philips, GE units in China bribery probe: report

US keeps China, India on intellectual rights watch list

CHIP TECH
Forest canopies buffer against climate change

Partially logged rainforests emitting more carbon than previously thought

Conifer study illustrates twists of evolution

Romanian forests face 'acute' illegal logging problem

CHIP TECH
NASA Aids Response to Nepal Quake

Dull forest glow yields orbital tracking of photosynthesis

MOU between ISRO Department of Land Resources to beef up EO capacity

Technologies enable ambitious MMS mission

CHIP TECH
Chemists strike nano-gold with 4 new atomic structures

New technique for exploring structural dynamics of nanoworld

Nanotubes with 2 walls have singular qualities

Happily ever after: Scientists arrange protein-nanoparticle marriage




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.