GPS News  
CARBON WORLDS
Deep-sea bacteria could help neutralize greenhouse gas
by Staff Writers
Gainesville FL (SPX) Oct 26, 2015


Brian Mahon and Avni Bhatt, graduate research assistants in the department of biochemistry and molecular biology, inspect a bacterium that is used to produce carbonic anhydrase. The carbonic anhydrase can potentially be used to neutralize the carbon dioxide produced by industry and power plants, their research found. Image courtesy Mindy Miller, University of Florida Health. For a larger version of this image please go here.

A type of bacteria plucked from the bottom of the ocean could be put to work neutralizing large amounts of industrial carbon dioxide in the Earth's atmosphere, a group of University of Florida researchers has found.

Carbon dioxide, a major contributor to the buildup of atmospheric greenhouse gases, can be captured and neutralized in a process known as sequestration. Most atmospheric carbon dioxide is produced from fossil fuel combustion, a waste known as flue gas. But converting the carbon dioxide into a harmless compound requires a durable, heat-tolerant enzyme. That's where the bacterium studied by UF Health researchers comes into play. The bacterium - Thiomicrospira crunogena - produces carbonic anhydrase, an enzyme that helps remove carbon dioxide in organisms.

So what makes the deep-sea bacterium so attractive? It lives near hydrothermal vents, so the enzyme it produces is accustomed to high temperatures. That's exactly what's needed for the enzyme to work during the process of reducing industrial carbon dioxide, said Robert McKenna, Ph.D., a professor of biochemistry and molecular biology in the UF College of Medicine, a part of UF Health.

"This little critter has evolved to deal with those extreme temperature and pressure problems. It has already adapted to some of the conditions it would face in an industrial setting," he said.

The findings by the McKenna group, which included graduate research assistants Brian Mahon and Avni Bhatt, were published recently in the journals Acta Crystallographica D: Biological Crystallography and Chemical Engineering Science.

The chemistry of sequestering works this way: The enzyme, carbonic anhydrase, catalyzes a chemical reaction between carbon dioxide and water. The carbon dioxide interacts with the enzyme, converting the greenhouse gas into bicarbonate. The bicarbonate can then be further processed into products such as baking soda and chalk.

In an industrial setting, the UF researchers believe the carbonic anhydrase could be captured this way: The carbonic anhydrase would be immobilized with solvent inside a reactor vessel that serves as a large purification column. Flue gas would be passed through the solvent, with the carbonic anhydrase converting the carbon dioxide into bicarbonate.

Neutralizing industrial quantities of carbon dioxide can require a significant amount of carbonic anhydrase, so McKenna's group found a way to produce the enzyme without repeatedly harvesting it from the sea floor. The enzyme can be produced in a laboratory using a genetically engineered version of the common E. coli bacteria. So far, the UF Health researchers have produced several milligrams of the carbonic anhydrase, though Bhatt said much larger quantities would be needed to neutralize carbon dioxide on an industrial scale.

That's just one of the challenges researchers face before the enzyme could be put to use against carbon dioxide in real-world settings. While it has good heat tolerance, the enzyme studied by McKenna's team isn't particularly efficient.

"You want it to do the reaction faster and more efficiently," Bhatt said. "The fact that it has such a high thermal stability makes it a good candidate for further study."

Ideally, Bhatt said, more research will produce a variant of the enzyme that is both heat-tolerant and fast-acting enough that it can be used in industrial settings. Next, they want to study ways to increase the enzyme's stability and longevity, which are important issues to be addressed before the enzyme could be put into widespread industrial use.

While carbonic anhydrase's ability to neutralize carbon dioxide has been widely studied by McKenna and other scientists around the world for some time, finding the best enzyme and putting it to work in an efficient and affordable carbon sequestration system has been challenging. Still, McKenna said he is encouraged by the prospect of discoveries that could ultimately benefit the planet.

"It shows that it's physically possible to take known enzymes such as carbonic anhydrase and utilize them to pull carbon dioxide out of flue gas," he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Florida
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Cobalt atoms on graphene a powerful combo
Houston TX (SPX) Oct 23, 2015
Graphene doped with nitrogen and augmented with cobalt atoms has proven to be an effective, durable catalyst for the production of hydrogen from water, according to scientists at Rice University. The Rice lab of chemist James Tour and colleagues at the Chinese Academy of Sciences, the University of Texas at San Antonio and the University of Houston have reported the development of a robust ... read more


CARBON WORLDS
EU lawmakers throw out GMO compromise law

Reducing the sweetness to survive

Farmers lose debt gamble in typhoon-plagued Philippines

Australian technology allows cows' weights to be monitored from space

CARBON WORLDS
Photons open the gateway for quantum networks

Researchers transform slow emitters into fast light sources

Electronics get a power boost with the addition of a simple material

Light goes infinitely fast with new on-chip material

CARBON WORLDS
China punishes Shanghai airport for flight delays

Lockheed Martin delivers 31st C-5M Super Galaxy to U.S. Air Force

Air Force Awards Contract for Long Range Strike Bomber

Errant military blimp sparks fighter jet response, power outages in US

CARBON WORLDS
Pollution scam pushes VW into first quarterly loss in 15 years

Tokyo Motor Show kicks off with a spotlight on self-driving cars

Automakers win reprieve on EU pollution testing

Cyclists battle Philippine capital's 'Carmageddon'

CARBON WORLDS
German exporters thrive despite China concerns: federation

Pomp and protests as China's Xi meets Queen Elizabeth II

India's Tata Steel blames China for British jobs cuts

Myanmar's elite dig 'stone of heaven' from mines of hell

CARBON WORLDS
Elephants boost tree losses in South Africa's largest savanna reserve

More rain leads to fewer trees in the African savanna

Future coastal climate not cool for redwood forests

New study rings alarm for sugar maple in Adirondacks

CARBON WORLDS
China plans to launch CO2 monitoring satellite in 2016

Establishing priorities for Earth observation satellites

Minsk, Moscow to Define Concept of Belarusian Remote Sensing Satellite Soon

Kazakhstan to use own satellites to track illegal activities

CARBON WORLDS
Umbrella-shaped diamond nanostructures make efficient photon collectors

Anti-clumping strategy for nanoparticles

Are cars nanotube factories on wheels

New design rule brings nature-inspired nanostructures one step closer









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.