GPS News  
TECH SPACE
Dancing on ice
by Staff Writers
Onna, Japan (SPX) Apr 06, 2016


This is the most common crystal structure of water ice. Oxygen (red sphere) are located in a hexagonal configuration, similar to a honey comb. Each oxygen ion is bound to neighboring protons (white sphere, hydrogen) by two short bonds and two longer bonds. The structure respects the ice rules: each bond can contain only one proton and each oxygen ion has two protons adjacent to it. Image courtesy OIST. For a larger version of this image please go here.

While drinking your favourite cold drink, you probably do not imagine what is going on inside each ice cube. At the Okinawa Institute of Science and Technology Graduate University (OIST), the Theory of Quantum Matter Unit, led by Professor Nic Shannon has explained in detail the theory behind two experiments that show how protons inside ice behave. Their findings have been published in Physical Review B.

Everything we see from a cloud of smoke to a solid rock takes that specific form because of the collective behaviour of the atoms that make up that object. However, how do atoms choose how to behave? And which choices do they have? "We understand almost everything about how a single quantum particle behaves," explains Prof. Shannon, "but put a group of quantum particles together, and anything can happen. Surprisingly, we still don't really know what happens in something as simple as ice."

A water molecule (H20) is formed when an oxygen ion forms covalent bonds with two protons (hydrogen). In ice, these water molecules are connected by weaker hydrogen bonds, so that every oxygen forms two short covalent bonds and two long hydrogen bonds with its neighbouring protons. Water ice is unique, because the oxygen atoms are ordered in hexagonally shaped crystals similar to honeycombs, but the hydrogen protons do not follow a regular pattern.

Instead, they respect the so-called "ice rules": each bond can contain only one proton and each oxygen ion has two protons adjacent to it; but there are virtually infinite ways for the protons to satisfy this rule, even in a small piece of ice. So are protons in ice ordered or disordered?

OIST scientists have answered this first question by offering a theoretical explanation of the results from an experiment carried out in England, in which neutrons were scattered from crystals of frozen heavy water (D20). When neutrons are scattered from the ordered atoms in a crystal, experiments show a regular pattern of spots.

Meanwhile scattering from completely disordered atoms is uniform, and featureless. But for protons in ice, neither of these things happens, and experiments instead show patterns which look like bowties, and like the letter "M". The "bowties", technically called "pinch points", are particularly interesting, because they show that protons are not completely disordered. They are locally ordered, yet globally disordered.

This pattern is very rare in nature, it happens only in ice, a type of magnet called spin ice and a class of materials called proton-bonded ferroelectrics. "The presence of pinch points is telling us that protons can be described mathematically by a type of theory called a gauge theory, which is common to all the fundamental forces of nature. This is one of nature's best tricks," explains Prof. Shannon, "and is the basis of the Standard Model of elementary particles".

The OIST team also analysed ice from a different angle, from the point of view of quantum physics. Quantum physics allows protons to hop from one place to another, by a phenomenon called quantum tunnelling. Therefore, while oxygen's position is stable and ordered, protons can have a more fluid behavior. "Protons in water ice are not still, they dance around the oxygen," illustrates Prof. Shannon. "Experiments suggest that protons are disordered and mobile even at temperatures close to -268 + C".

Using a quantum version of their gauge theory, OIST scientists suggested a theoretical explanation for the results of another experiment, also carried out in England, which measured the energy absorbed by ice from a beam of neutrons passing through it.

"When you sing to a glass, you can make it vibrate. When neutrons scatter from the protons in ice, they do the same thing," explains Prof. Shannon. But in this case, the collective "vibration" of the disordered protons has a very special form: it behaves exactly like photons, the elementary particles that make up light. However, while ordinary photons are vibrations of electric and magnetic fields, ice's photons are made up of protons, moving in a coordinated manner.

"The mathematics that explains the collective motion of protons in ice is exactly the same as the mathematics that describe light. Light and proton movements in ice are very similar," points out Dr Owen Benton, the first author in this study.

"The more that we learn about water, the more we realise that it is one the strangest and most beautiful things in the Universe," concludes Prof. Shannon. Think about it, when sipping your favourite cold drink!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Transparent wood could one day help brighten homes and buildings
Washington DC (SPX) Apr 05, 2016
When it comes to indoor lighting, nothing beats the sun's rays streaming in through windows. Soon, that natural light could be shining through walls, too. Scientists have developed transparent wood that could be used in building materials and could help home and building owners save money on their artificial lighting costs. Their material, reported in ACS' journal Biomacromolecules, ... read more


TECH SPACE
Earth's soils could play key role in locking away greenhouse gases

A lesson from wheat evolution: From the wild to our spaghetti dish

China arrests six over fake infant formula: government

Can urban gardeners benefit ecosystems while keeping food traditions alive?

TECH SPACE
Second quantum revolution a reality with chip-based atomic physics

Hybrid pixel array detectors enter the low-noise regime

Taiwan's TSMC signs deal for $3 bn plant in China

New terahertz source could strengthen sensing applications

TECH SPACE
New system helps aircraft automatically avoid mid-air collisions

Navy funds Boeing procurement of P-8A Poseidon components

Kuwait signs contract for 28 Eurofighters

Russia bolsters fighter fleet with new Su-30SM buy

TECH SPACE
Self-drive trucks 'future of Europe's busy highways'

Tesla unveils cheaper model aimed at mass market

US sues Volkswagen for deceptive 'clean diesel' campaign

Newest Tesla electric will aim at middle market

TECH SPACE
Tiny Djibouti thinks big with China-backed infrastructure splurge

'Powerful force' behind Panama Papers: China media

China's HBIS to acquire Serbia steel plant

Chinese 'parachute kids' flock to US schools

TECH SPACE
Major new project maps out woodland biodiversity

Massive deforestation found in Brazil's Cerrado

Maximum sentences for killers of Costa Rica environmentalist

Massive deforestation discovered in Brazil's Cerrado region

TECH SPACE
Sentinel-3A feels the heat

UAE monitors Dubai coastline changeds since 2009

Thales, Airbus DS tapped for French military maps

Satellites key to monitoring harmful emissions: space agencies

TECH SPACE
Heat and light get larger at the nanoscale

Nanoporous material's strange "breathing" behavior

Nanocage surfaces get 'makeover' in room temperature

Nanolight at the edge









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.