![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Hamburg, Germany (SPX) May 16, 2019
Parcel-delivery drones, air taxis and uncrewed inspection aircraft will to fly over cities and interact with one another in the future. They must be able to recognise and avoid one another, ideally before even taking off. The German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and its partners in the City Air Traffic Management (City-ATM) project conducted successful flight tests around the Kohlbrand Bridge in late April 2019 to demonstrate how drones are already able to cooperate with one another, as demonstrated by flying around a bridge, amid active shipping and road traffic. "Under highly realistic conditions, we demonstrated how two automatically operated camera drones can work in parallel - from flight planning to detection and identification, through to flight monitoring and conflict detection and avoidance," explains Project Leader Stefan Kern of the DLR Institute of Flight Guidance. "The use case of a bridge flight provided an ideal test scenario, as it required the drones to work together particularly closely and in a very dynamic way."
Multiple communications safeguards against failure The uncrewed aircraft, provided by the DLR institutes of Flight Guidance, Flight Systems and Communications and Navigation, were equipped with special technology that enabled determination of their location and status, as well as multiple failsafe communications links ('HydraCom') between the drones and the control station. Deutsche Flugsicherung (DFS), the company responsible for air traffic control in Germany, tracked their locations and was thus able to provide an integrated air situation display. Continuous transmission of the drone locations gave the pilots at the control station a picture of the situation in the air, including any conflicts. In addition to testing the overall system during several flights, the researchers also successfully demonstrated the detection of hairline cracks.
Detailed flight planning The system developed for City-ATM involves several steps. First, the pilots and drones are electronically registered for take-off clearance and authenticated using NXP and FlyNex technology. At the same time, the flight missions are planned, taking spatial flight restrictions (referred to as geofences) into consideration. Once the basic waypoint planning has been completed, this information is used to generate flightpaths (trajectories). The system also takes account of the flight performance of the equipment, as well as local conditions and time constraints. This allows potential conflicts to be identified even before take-off. It is particularly important that drone flights covering large distances - as in the case of drones that fly out of the line of sight of those controlling them - should be able to detect and avoid other airspace users at an early stage. The U-Fly ground control station for drones, belonging to the Institute of Flight Guidance, was used for the test flights in Hamburg. The City-ATM system will be supplemented with additional services and tested for other use cases in the follow-up project phases, which will run until late 2020. The researchers will investigate areas such as the optimal use of drones for rescue workers. The City-ATM research project is funded via DLR's Aeronautics research programme, among other sources.
![]() ![]() CGI and Thales sign contract for secure Galileo satellite navigation services Rotterdam, Netherlands (SPX) May 03, 2019 CGI has signed an agreement with Thales Alenia Space France to enhance and maintain security software for the Galileo satellite navigation system. Valued at approximately 14 million euros, the contract will last until the end of 2020. CGI experts are working on this strategic project from Rotterdam and Toulouse. CGI will improve the functionality, robustness and reliability of Galileo's ground infrastructure, as well as enhance and maintain software for its Public Regulated Service Key Management ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |