GPS News  
STELLAR CHEMISTRY
Cosmic rays help supernovae explosions pack a bigger punch
by Staff Writers
London, UK (SPX) Jul 20, 2021

False colour image of one of the supernova simulations showing hot and cold patches of gas (white/green) in the bubble and the filamentary structure of cosmic rays (blue) around the shell of the supernova remnant.

The final stage of cataclysmic explosions of dying massive stars, called supernovae, could pack an up to six times bigger punch on the surrounding interstellar gas with the help of cosmic rays, according to a new study led by researchers at the University of Oxford. The work will be presented by PhD student Francisco Rodriguez Montero today (19 July) at the virtual National Astronomy Meeting (NAM 2021).

When supernovae explode, they emit light and billions of particles into space. While the light can freely reach us, particles become trapped in spiral loops by magnetic shockwaves generated during the explosions. Crossing back and forth through shock fronts, these particles are accelerated almost to the speed of light and, on escaping the supernovae, are thought to be the source of the mysterious form of radiation known as cosmic rays.

Due to their immense speed, cosmic rays experience strong relativistic effects, effectively losing less energy than regular matter and allowing them to travel great distances through a galaxy. Along the way, they affect the energy and structure of interstellar gas in their path and may play a crucial role in shutting down the formation of new stars in dense pockets of gas. However, to date, the influence of cosmic rays in galaxy evolution has not been well understood.

In the first high-resolution numerical study of its kind, the team ran simulations of the evolution of the shockwaves emanating from supernovae explosions over several million years. They found that cosmic rays can play a critical role in the final stages of a supernova's evolution and its ability to inject energy into the galactic gas that surrounds it.

Rodriguez Montero explains: "Initially, the addition of cosmic rays does not appear to change how the explosion evolves. Nevertheless, when the supernova reaches the stage in which it cannot gain more momentum from the conversion of the supernova's thermal energy to kinetic energy, we found that cosmic rays can give an extra push to the gas, allowing for the final momentum imparted to be up to 4-6 times higher than previously predicted."

The results suggest that gas outflows driven from the interstellar medium into the surrounding tenuous gas, or circumgalactic medium, will be dramatically more massive than previously estimated.

Contrary to state-of-the-art theoretical arguments, the simulations also suggest that the extra push provided by cosmic rays is more significant when massive stars explode in low-density environments. This could facilitate the creation of super-bubbles powered by successive generations of supernovae, sweeping gas from the interstellar medium and venting it out of galactic discs.

Rodriguez Montero adds: "Our results are a first look at the extraordinary new insights that cosmic rays will provide to our understanding of the complex nature of galaxy formation."


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Seeing some cosmic x-ray emitters might be a matter of perspective
Pasadena CA (JPL) Jul 12, 2021
It's hard to miss a flashlight beam pointed straight at you. But that beam viewed from the side appears significantly dimmer. The same holds true for some cosmic objects: Like a flashlight, they radiate primarily in one direction, and they look dramatically different depending on whether the beam points away from Earth (and nearby space telescopes) or straight at it. New data from NASA's NuSTAR space observatory indicates that this phenomenon holds true for some of the most prominent X-ray emitter ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Paris start-up sees a future for lab-grown foie gras

Experts tackle modern slavery in Greek strawberry fields using satellite technology

New method makes vital fertilizer element in a more sustainable way

Colorado ranchers face not just drought but rising social pressures

STELLAR CHEMISTRY
Concepts for the development of German quantum computers

Ultrathin semiconductors electrically connected to superconductors for the first time

UK PM reveals govt will review Chinese purchase of semiconductor firm

Broadcom settles US antitrust case on chip market

STELLAR CHEMISTRY
JetPack Aviation completes initial Speeder VTOL trials

Russia unveils stealth fighter jet to compete with F-35s

F-16s of the D.C. Air National Guard arrive in Saudi Arabia

Rheinland Air Service Orders Bye Aerospace eFlyer 800s

STELLAR CHEMISTRY
Ford, Lyft to collaborate on autonomous ride-hailing venture

Self-driving car startup Aurora on road to going public

Will drivers get burned by EU ban on ICE cars?

UK publishes plans to decarbonise transport by mid-century

STELLAR CHEMISTRY
Nasdaq, large banks unveil exchange for private stock sales

Asia builds on global retreat as Delta fears deepen

US warns of 'growing risks' for business in blow to Hong Kong

Asian markets drop on fresh inflation, virus worries

STELLAR CHEMISTRY
UNESCO removes DR Congo park from endangered list

NASA study finds tropical forests' ability to absorb carbon dioxide is waning

20% of intact tropical forests overlap with extractive industries

Environment watchdogs oppose lifting of DR Congo logging ban

STELLAR CHEMISTRY
The origin of bifurcated current sheets explained

Global satellite data shows clouds will amplify global heating

A machine learning breakthrough: using satellite images to improve human lives

Pathfinder satellite paves way for constellation of tropical-storm observers

STELLAR CHEMISTRY
Custom-made MIT tool probes materials at the nanoscale

Nano-Bio Materials Consortium introduces new AFRL-Industry Co-Development Program

Nanostructured device stops light in its tracks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.