GPS News  
TECH SPACE
Controlling the properties of matter in two-dimensional crystals
by Staff Writers
University Park PA (SPX) Nov 08, 2016


This is an electron microscopy image of ordered atoms of tungsten (W) and molybdenum (Mo) against artistic representations of triangular single layer flakes of WxMo1-xS2 on a substrate. Image courtesy Amin Azizi and Andrea Kohler and Penn State. For a larger version of this image please go here.

By creating atomic chains in a two-dimensional crystal, researchers at Penn State believe they have found a way to control the direction of materials properties in two and three dimensional crystals with implications in sensing, optoelectronics and next-generation electronics applications. Whether an alloy has a random arrangement of atoms or an arrangement that is ordered can have large effects on a material's properties.

In a paper published online in Nano Letters, Nasim Alem, assistant professor of materials science and engineering, and colleagues at Penn State used a combination of simulations and scanning transmission electron microscopy (STEM) imaging to determine the atomic structure of an ordered alloy of molybdenum, tungsten and sulfur. They determined that fluctuations in the amount of available sulfur were responsible for the creation of atomic chains of either molybdenum or tungsten.

"We discovered how chains form in a two-dimensional alloy as a result of fluctuations in the amount of a particular precursor, in this case sulfur," said Alem.

"Normally, when we combine atoms of different elements, we don't know how to control where the atoms will go. But we have found a mechanism to give order to the atoms, which in turn introduces control of the properties, not only heat transport, as is the case in this work, but also electronic, chemical or magnetic properties in other alloy cases. If you know the mechanism, you can apply it to arrange the atoms in a wide range of alloys in 2D crystals across the Periodic Table."

In the case of the molybdenum, tungsten and sulfur alloy, they showed that the electronic properties were the same in every direction, but using simulations they predict that the thermal transport properties are smaller perpendicular to the chains or stripes.

"We didn't know why this crystal forms an ordered structure, so we worked with my colleague Dr. Vin Crespi to understand the underlying physics that causes order in this crystal," said Alem. "Our calculations show it was the fluctuations in the third element, sulfur, that was determining how the chains formed."

Vincent H. Crespi, Distinguished Professor of Physics, and professor of chemistry and materials science and engineering who developed the theoretical understanding of the phenomenon, said, "Although the interior of the flake is indifferent to whether molybdenum or tungsten occupies any site in the crystal lattice, the edge of the growing crystal does care.

Depending on how much sulfur is available at a given location, the edge will prefer to be either 100 percent molybdenum or 100 percent tungsten. So as the availability of sulfur randomly varies during growth, the system alternately lays down rows of molybdenum or tungsten. We think this may be a general mechanism to create stripe-like structures in 2D materials."

Amin Aziz, a Ph.D. candidate in Alem's group and lead author, produced the STEM imaging and spectroscopy that showed the fine atomic structure of the alloy samples and their electronic properties.

"When we are able to directly image constitutive atoms of a substance, see how they interact with each other at the atomic level and try to understand the origins of such behaviors, we could potentially create new materials with unusual properties that have never existed," said Azizi,

A team led by Mauricio Terrones, professor of physics, produced samples of this ordered alloy by vaporizing powders of all three elements, called precursors, under high heat.

Along with Azizi, Terrones, Alem and Crespi, other coauthors on the paper titled "Spontaneous formation of atomically thin stripes in transition metal dichalcogenide monolayers," include Yuanxi Wang, a Ph.D. candidate in Crespi's group, Ke Wang, a staff scientist in the Materials Research Institute who helped with the electron microscopy, Ph.D. candidate Zhong Lin in materials science and Ana Laura Elias, research associate in the Terrones group.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Lehigh scientists fabricate a new class of crystalline solid
Bethlehem PA (SPX) Nov 08, 2016
Scientists at Lehigh University, in collaboration with Lawrence Berkeley National Laboratory, have demonstrated the fabrication of what they call a new class of crystalline solid by using a laser heating technique that induces atoms to organize into a rotating lattice without affecting the macroscopic shape of the solid. By controlling the rotation of the crystalline lattice, the researche ... read more


TECH SPACE
Drought-hit Zimbabwe farmers look to science to save crops

Model predicts elimination of GMO crops would cause hike in greenhouse gas emissions

Forests, locals harmed in Mexico's avocado boom

How the chicken crossed the Red Sea

TECH SPACE
Semiconductor-free microelectronics are now possible, thanks to metamaterials

Chip maker Broadcom in $5.9 bn deal to buy Brocade

Special-purpose computer that may someday save us billions

Exploring defects in nanoscale devices for possible quantum computing applications

TECH SPACE
'Morphing' wing offers new twist on plane flight and manufacturing

Sweden orders new pilot helmets

Russia's UEC, China's SBW discuss joint gas turbine engine project

Boeing gets $478 million F-15 electronic warfare system contract

TECH SPACE
China auto sales growth falls back in October: group

VW's Audi hit with fresh emissions cheating lawsuit

Nissan aims for China launch of cheap electric car in 2 years

VW makes progress towards 3.0 l diesel settlement: judge

TECH SPACE
China producer prices rise for second straight month

Trump win casts pall of uncertainty over Asia

EU nears tougher rules on China dumping

Bashed on trade, Beijing may benefit from President Trump

TECH SPACE
Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback

TECH SPACE
Extreme weather warnings at UN climate meeting

Don't see ISRO's Bhuvan as competition: Google India

GRAPES-3 indicates a crack in Earth's magnetic shield

Study reveals how particles that seed clouds in the Amazon are produced

TECH SPACE
Light drives single-molecule nanoroadsters

Nanostructures made of pure gold

Shedding light on the formation of nanodroplets in aqueous

'Pressure-welding' nanotubes creates ultrastrong material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.