GPS News  
TIME AND SPACE
Controlling mirror images
by Staff Writers
Berlin, Germany (SPX) May 01, 2022

A new experimental method transferred the mirror-image forms of chiral molecules into different rotational states more efficiently than ever before.

Chirality, while not a rarity in the world of molecules, is nevertheless a special property. If a molecule is chiral (from the Greek word chiros = hand), it exists in two mirrored versions that are very similar but not identical - like two hands that can be folded together, but cannot be placed congruently on top of each other. This is why we speak of right-handed and left-handed molecules, or enantiomers, which means "opposite shape" in Greek.

An international team of scientists from the Fritz Haber Institute of the Max Planck Society and the Prokhorov General Physics Institute of the Russian Academy of Sciences has found a way to address these molecules separately. Since chiral molecules are very similar to each other, this is a real challenge.

"The trick is to expose them to electromagnetic radiation in a way so that only one 'hand', i.e. one enantiomer, responds. This allows us to specifically control right- or left-handed molecules and learn more about them," says Dr. Sandra Eibenberger-Arias, head of the Controlled Molecules group at the Fritz-Haber-Institut.

Learning this is important because enantiomers sometimes have very different biological and chemical qualities, for which explanations are sought. Take, for example, the chiral molecule carvone: one 'hand' smells like mint, the other like caraway. Or the notorious sedative thalidomide, which is named after its active ingredient, a chiral molecule: while one form had the intended sedative effect, the other caused birth defects.

Eibenberger-Arias' group studies the physical properties of chiral molecules. "Theory predicts a small energy difference between the two enantiomers, due to what is called parity violation. However, this has not been shown experimentally so far," explains JuHyeon Lee of the Fritz-Haber-Institut, first author of the published results, which appeared in the journal Physical Review Letters.

With a clever combination of different methods, however, the group of scientists has come a little closer to achieving this. They irradiate chiral molecules in the gas phase with UV radiation and microwaves. As a result, right-handed and left-handed molecules are put into different rotational states by changing the microwave radiation.

The researchers have thus gained more control than ever before over which "hand" is in which rotational state. They have also, for the first time, compared experimental results with accurate predictions from theory, leading to an improved understanding of the underlying physical effects.

While complete separation of the enantiomers may not yet be achieved using this method, it is remarkable that they could be controlled so successfully in the first place. This contradicts the often-used over-simplified account that they have the same physical properties.

"If that were the case, we would not be able to control the enantiomers using physical methods," says Sandra Eibenberger-Arias. The international team of three female and three male scientists has thus laid a good foundation for follow-up experiments, and perhaps even for experimental proof of parity violation. This would be a milestone for basic research - and for all future applications as well.

Research Report:Quantitative Study of Enantiomer-Specific State Transfer


Related Links
Fritz Haber Institute of the Max Planck Society
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Physicists embark on a hunt for a long-sought quantum glow
Boston MA (SPX) Apr 28, 2022
For "Star Wars" fans, the streaking stars seen from the cockpit of the Millennium Falcon as it jumps to hyperspace is a canonical image. But what would a pilot actually see if she could accelerate in an instant through the vacuum of space? According to a prediction known as the Unruh effect, she would more likely see a warm glow. Since the 1970s when it was first proposed, the Unruh effect has eluded detection, mainly because the probability of seeing the effect is infinitesimally small, requiring ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Indonesia's palm oil export ban heats up vegetable oil market

Clusters of weather extremes will increase risks to corn crops, society

Biden protects US forests but struggles on biggest climate goals

Small bees better at coping with warming, bumblebees struggle: study

TIME AND SPACE
New approach may help clear hurdle to large-scale quantum computing

Neon ice shows promise as new qubit platform

The quest for an ideal quantum bit

Kenya's e-waste recyclers battle to contain rising scourge

TIME AND SPACE
Turkey air force pulls out of exercise in Athens; Says Greek jets violating airpsace

magniX teams aims to accelerate electric flight for commercial aviation

Lignin-based jet fuel packs more power for less pollution

Airbus and ITA Airways partner to develop urban air mobility in Italy

TIME AND SPACE
Sudan's electric rickshaws cut costs, help environment

Tesla recalls second batch of cars in China on safety concerns

German prosecutors conduct raids in Suzuki diesel probe

GM announces it will make electric Corvette

TIME AND SPACE
Asian markets drop ahead of key Fed rate decision

Starbucks profits edge higher despite China weakness

Asian markets rise as Fed eases fears over huge rate hike

Asian markets drop as traders brace for Fed hike

TIME AND SPACE
Parisians up in arms over plan to fell trees near Eiffel Tower

10 football pitches of pristine rainforest lost per minute in 2021

DRCongo suspends 'illegal' forestry concessions

Planet Partners with Canadian universities to research boreal forests

TIME AND SPACE
NASA selects investigation teams to join Geospace Dynamics Mission

Satellogic and Geollect to provide geospatial insights for the maritime domain

BlackSky upgrades site monitoring with enhanced analytics and imaging capabilities

Weather satellite prepares for lightning

TIME AND SPACE
Seeing more deeply into nanomaterials

Atom by atom: building precise smaller nanoparticles with templates

Ring my string: Building silicon nano-strings

Nanotube films open up new prospects for electronics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.