GPS News  
CHIP TECH
Controllable electron flow in quantum wires
by Staff Writers
Princeton NJ (SPX) Feb 07, 2019

This is a scanning tunneling microscope image showing a boundary between regions with different electron orbit orientations.

Princeton researchers have demonstrated a new way of making controllable "quantum wires" in the presence of a magnetic field, according to a new study published in Nature.

The researchers detected channels of conducting electrons that form between two quantum states on the surface of a bismuth crystal subjected to a high magnetic field. These two states consist of electrons moving in elliptical orbits with different orientations.

To the team's surprise, they found that the current flow in these channels can be turned on and off, making these channels a new type of controllable quantum wire.

"These channels are remarkable because they spontaneously form at the boundaries between different quantum states in which electrons collectively align their elliptical orbits," said Ali Yazdani, the Class of 1909 Professor of Physics and director of the Princeton Center for Complex Materials, who headed the research.

"It is exciting to see how the interaction between electrons in the channels strongly dictates whether or not they can conduct."

The researchers used a scanning tunneling microscope - a device capable of imaging individual atoms and mapping the motion of electrons on a material's surface - to visualize electron behaviors on the surface of a crystal made of pure bismuth.

With this instrument, the team directly imaged the electrons' motions in the presence of a magnetic field thousands of times larger that of a refrigerator magnet. The application of the large magnetic field forces electrons to move in elliptical orbits, instead of the more typical flow of electrons parallel to the direction of an electric field.

The team found that the conducting channels form at the boundary, which they call a valley-polarized domain wall, between two regions on the crystal where the electron orbits switch orientations abruptly.

Mallika Randeria, a graduate student in the Department of Physics, who carried out the experiments, said: "We find that there are two-lane and four-lane channels in which the electrons can flow, depending on the precise value of the magnetic field." She and her colleagues observed that when electrons are tuned to move in a four-lane channel, they get stuck, but they can flow unimpeded when they are confined to only a two-lane channel.

In trying to understand this behavior, the researchers uncovered new rules by which the laws of quantum mechanics dictate repulsion between electrons in these multi-channel quantum wires.

While the larger number of lanes would seem to suggest better conductivity, the repulsion between electrons counter-intuitively causes them to switch lanes, change direction, and get stuck, resulting in insulating behavior. With fewer channels, electrons have no option to change lanes and must transmit electrical current even if they have to move "through" each other - a quantum phenomenon only possible in such one-dimensional channels.

Similar protected conduction occurs along the boundaries of so-called topological states of matter, which were the subject of the 2016 Nobel Prize awarded to Princeton's F. Duncan Haldane, the Sherman Fairchild University Professor of Physics.

The theoretical explanation for the new finding builds on earlier work carried out by two members of the team, Siddharth Parameswaran, who was then a graduate student at Princeton and is now an associate professor of physics at Oxford University, and Princeton's Shivaji Sondhi, professor of physics, and collaborators.

"Although some of the theoretical ideas we used have been around for a while, it's still a challenge to see how they fit together to explain an actual experiment, and a real thrill when that happens," Parameswaran said.

"This is a perfect example of how experiment and theory work in tandem: Without the new experimental data we would never have revisited our theory, and without the new theory it would have been difficult to understand the experiments."

Research Report: "Interacting multi-channel topological boundary modes in a quantum Hall valley system,"


Related Links
Princeton University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Argonne researchers develop new method to reduce quantum noise
Lemont IL (SPX) Feb 05, 2019
In a recent issue of Physical Review A, Argonne researchers reported a new method for alleviating the effects of "noise" in quantum information systems, a challenge scientists around the globe are working to meet in the race toward a new era of quantum technologies. The new method has implications for the future of quantum information science, including quantum computing and quantum sensing. Many current quantum information applications, such as carrying out an algorithm on a quantum computer, suf ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Mites, not a virus, are the main threat to bees, study finds

'Radical rethink' needed to tackle obesity, hunger, climate: report

Weather at key growth stages predicts Midwest corn yield and grain quality

Cattle urine's planet-warming power can be curtailed with land restoration

CHIP TECH
Theoretical model may help solve molecular mystery

Argonne researchers develop new method to reduce quantum noise

Waterproof graphene electronic circuits

New quantum system could help design better spintronics

CHIP TECH
Air Force names first female flight commander for F-16 Viper team

Boeing awarded $39M to finalize new Chinooks for U.S. Special Ops

Kay and Associates awarded $63M for support on Kuwaiti F/A-18s

Boeing bullish on 2019 despite US-China tensions

CHIP TECH
Self-driving cars and geospatial data: Who holds the keys?

Muscovites declare cold war on corrosive snow salt

Tesla posts higher earnings but still falls short

Mean streets: Self-driving cars will 'cruise' to avoid paying to park

CHIP TECH
China fears shake Berlin's economic principles

US Treasury welcomes 'support' from Democrats on China

Foreign businesses fret as China fast-tracks investment law

US, China hail major 'progress' in trade talks

CHIP TECH
'Rocket C': Space Industry Source Unveils Tech Details of Russia Lunar Mission

Abandoned fields turn into forests five times faster than thought

Inequality fuels deforestation in Latin American, research shows

How much rainforest do birds need?

CHIP TECH
Extreme rainfall events are connected across the world

River levels tracked from space

Russia to launch Arctic weather satellite

Satellogic signs agreement with CGWIC to launch earth observation constellation of 90 satellites

CHIP TECH
Nano-infused ceramic could report on its own health

Aerosol-assisted biosynthesis strategy enables functional bulk nanocomposites

Platinum forms nano-bubbles

New applications for encapsulated nanoparticles with promising properties









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.