Subscribe free to our newsletters via your
. GPS News .




TECTONICS
Congestion in the Earth's mantle
by Staff Writers
Jena, Germany (SPX) Apr 03, 2013


This is Mineralogist Prof. Dr. Falko Langenhorst from Jena University (Germany). Credit: Photo: Anne Guenther/FSU.

The Earth is dynamic. What we perceive as solid ground beneath our feet, is in reality constantly changing. In the space of a year Africa and America are drifting apart at the back of the Middle Atlantic for some centimeters while the floor of the Pacific Ocean is subducted underneath the South American Continent. "In 100 million years' time Africa will be pulled apart and North Australia will be at the equator," says Prof.

Dr. Falko Langenhorst from the Friedrich Schiller University Jena (Germany). Plate tectonics is leading to a permanent renewal of the ocean floors, the mineralogist explains. The gaps between the drifting slabs are being filled up by rising melt, solidifying to new oceanic crust. In other regions the slabs dive into the deep interior of the Earth and mix with the surrounding Earth's mantle.

The Earth is the only planet in our solar system, conducting such a 'facelift' on a regular basis. But the continuous up and down on the Earth`s crust doesn't run smoothly everywhere. "Seismic measurements show that in some mantle regions, where one slab is subducted underneath another one, the movement stagnates, as soon as the rocks have reached a certain depth," says Prof. Langenhorst.

The causes of the 'congestion' of the subducted plate are still unknown. In the current issue of the science magazine 'Nature Geoscience' Prof. Langenhorst and earth scientists of Bayreuth University now explain the phenomenon for the first time (DOI: 10.1038/NGEO1772).

According to this, the rocks of the submerging ocean plate pond at a depth of 440 to 650 kilometers - in the transition zone between the upper and the lower Earth mantle.

"The reason for that can be found in the slow diffusion and transformation of mineral components," mineralogist Langenhorst explains. On the basis of high pressure experiments the scientists were able to clarify things: under the given pressure and temperature in this depth, the exchange of elements between the main minerals of the subducted ocean plate - pyroxene and garnet - is slowed down to an extreme extent.

"The diffusion of a pyroxene-component in garnet is so slow, that the submerging rocks don't become denser and heavier, and therefore stagnate," the Jena scientist says.

Interestingly there is congestion in the earth mantle exactly where the ocean floor submerges particularly fast into the interior of the Earth. "In the Tonga rift off Japan for example, the speed of subduction is very high," Prof. Langenhorst states. Thereby the submerging rocks of the oceanic plate stay relatively cold up to great depth, which makes the exchange of elements between the mineral components exceptionally difficult.

"It takes about 100 Million years for pyroxene crystals which are only 1 mm in size to diffuse into the garnet. For this amount of time the submerging plate stagnates," Langenhorst describes the rock congestion.

It can probably only diffuse at the boundary of the lower Earth mantle. Because then pyroxene changes into the mineral akimotoite due to the higher pressure in the depth of 650 kilometers. "This could lead to an immediate rise in the rock density and would enable the submerging into greater depths."

Van Mierlo VL et al. Stagnation of subducting slabs in the transition zone due to slow diffusion in the majoritic garnet. Nature Geoscience, DOI: 10.1038/NGEO1772

.


Related Links
Friedrich-Schiller-Universitaet Jena
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
Scripps scientists image deep magma beneath Pacific seafloor volcano
San Diego CA (SPX) Apr 02, 2013
Since the plate tectonics revolution of the 1960s, scientists have known that new seafloor is created throughout the major ocean basins at linear chains of volcanoes known as mid-ocean ridges. But where exactly does the erupted magma come from? Researchers at Scripps Institution of Oceanography at UC San Diego now have a better idea after capturing a unique image of a site deep in the eart ... read more


TECTONICS
Singapore gardens aim for UNESCO heritage status

Munching sheep replace lawn mowers in Paris

Suspected killers of ecologists on trial in Brazil

Study looks at why chickens overeat

TECTONICS
Technique for cooling molecules may be a stepping stone to quantum computing

Penn engineers enable 'bulk' silicon to emit visible light for the first time

TED brings innovation talk to Intel

Ultra-precision positioning

TECTONICS
NASA Books Reveal Wisdom Gained from Failure

New Russian bomber taking shape

Northrop Grumman Wins US Navy Contract for Carrier Aircraft Inertial Navigation System

Boeing Delivers 1,000th Airplane to China

TECTONICS
US announces stricter gasoline standards

Japan venture to bring electric tuk-tuks to Asia

China car maker BYD reports profit plunge

Man creates car that runs on liquid air

TECTONICS
US visa day sparks new debate on tech workers

Glencore-Xstrata delay merger to wait for Chinese nod

Paraguay set against Venezuela pact role

Taiwan, China agree to further bank investments

TECTONICS
Researchers question evaluation methods for protected areas in the Amazon

Decreased Water Flow May be Trade-off for More Productive Forest

Middle ground between unlogged forest and intensively managed lands

Hunting for meat impacts on rainforest

TECTONICS
China to launch high-res Earth-observation satellite

How hard is it to 'de-anonymize' cellphone data?

Wearable system can map difficult areas

A Closer Look at LDCM's First Scene

TECTONICS
Imaging methodology reveals nano details not seen before

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators

Scientists develop innovative twists to DNA nanotechnology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement