GPS News  
CARBON WORLDS
Concrete jungle functions as carbon sink, UCI and other researchers find
by Staff Writers
Irvine CA (SPX) Nov 22, 2016


An international team of researchers including UCI Earth system scientist Steven Davis has found that over time, cement reabsorbs a significant portion of the CO2 emitted when the material was manufactured. Image courtesy Steven Davis and UCI. For a larger version of this image please go here.

Cement manufacturing is among the most carbon-intensive industrial processes, but an international team of researchers has found that over time, the widely used building material reabsorbs much of the CO2 emitted when it was made.

"It sounds counterintuitive, but it's true," said Steven Davis, associate professor of Earth system science at the University of California, Irvine. "The cement poured around the world since 1930 has taken up a substantial portion of the CO2 released when it was initially produced."

For a study published in Nature Geoscience, Davis and colleagues from China, Europe and other U.S. institutions tallied the emissions from cement manufacturing and compared them to the amount of CO2 reabsorbed by the material over its complete life cycle, which includes normal use, disposal and recycling.

They found that "cement is a large, overlooked and growing net sink" around the world - "sink" meaning a feature such as a forest or ocean that takes carbon dioxide out of the atmosphere and permanently tucks it away so that it can no longer contribute to climate change.

Cement manufacturing is considered doubly carbon-intensive because emissions come from two sources. CO2 molecules are released into the air when limestone (calcium carbonate) is converted to lime (calcium oxide), the key ingredient in cement. And to generate the heat necessary to break up limestone, factories also burn large quantities of natural gas, coal and other fossil fuels.

Davis and his fellow researchers looked at the problem from a different angle. They investigated how much of the gas is removed from the environment over time by buildings, roads and other kinds of infrastructure. Through a process called carbonation, CO2 is drawn into the pores of cement-based materials, such as concrete and mortar. This starts at the surface and moves progressively inward, pulling in more and more carbon dioxide as years pass.

More than 76 billion tons of cement was produced around the world between 1930 and 2013, according to the study; 4 billion tons were manufactured in 2013 alone, mostly in China. It's estimated that, as a result, a total of 38.2 gigatons of CO2 was released over that period. The scientists concluded, however, that 4.5 gigatons - or 43 percent of emissions from limestone conversion - were gradually reabsorbed during that time frame.

"Cement has gotten a lot of attention for its sizable contribution to global climate change, but this research reinforces that the leading culprit continues to be fossil fuel burning," Davis said.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Irvine
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Storing carbon dioxide underground by turning it into rock
Washington DC (SPX) Nov 21, 2016
In November, the Paris Climate Agreement goes into effect to reduce global carbon emissions. To achieve the set targets, experts say capturing and storing carbon must be part of the solution. Several projects throughout the world are trying to make that happen. Now, a study on one of those endeavors, reported in the ACS journal Environmental Science and Technology Letters, has found that w ... read more


CARBON WORLDS
Rice farming used as 'summer crop' by early Indus civilization

Riders on the waves: China's jellyfish-hauling mules a dying breed

Soybean plants with fewer leaves yield more

Precut salad promotes salmonella growth: Study

CARBON WORLDS
Making spintronic neurons sing in unison

World's fastest quantum simulator operating at the atomic level

Tracking the flow of quantum information

Breakthrough in the quantum transfer of information between matter and light

CARBON WORLDS
Chinese travel site Ctrip buys Skyscanner for $1.7 bn

Elbit delivers military aircraft for Affinity Flying Training Services

Britain builds maintenance hangar for A400M transports

Canada to order 18 Boeing Super Hornet fighter jets

CARBON WORLDS
Could moving walkways be the key to car-free cities of the future?

Five things to know about VW's 'dieselgate' scandal

How much attention do drivers need to pay

A novel catalyst design opens possibility to hydrogen vehicle

CARBON WORLDS
Flesh-and-blood Ken exposes Chinese labour conditions

New Christie's sale taps Asian quest for Western art

Ex-Ericsson executives tell of massive bribery: report

China watching Trump policies, will defend trade rights

CARBON WORLDS
Tribal protesters with arrows try to enter Brazil's Congress

Remote Amazon tribe kills illegal gold miners: officials

Large forest die-offs can have effects that ricochet to distant ecosystems

Global boreal forests differ but not immune to climate change

CARBON WORLDS
NASA launches Advanced Geostationary Weather Satellite for NOAA

Researchers targeting mysteries of deep Earth

Who knew? Ammonia-rich bird poop cools the atmosphere

How lightning strikes can improve storm forecasts

CARBON WORLDS
Researchers use acoustic waves to move fluids at the nanoscale

Researchers use graphene templates to make new metal-oxide nanostructures

Nano-scale electronics score laboratory victory

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.