Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Common mineral capable of making and breaking bonds
by Staff Writers
Tempe AZ (SPX) Jul 30, 2014


A team of ASU researchers has demonstrated that a particular mineral, sphalerite, can affect the most fundamental process in organic chemistry: carbon-hydrogen bond breaking and making. This is a sample of gem-quality sphalerite in a quartz matrix. Image courtesy Tom Sharp.

Reactions among minerals and organic compounds in hydrothermal environments are critical components of the Earth's deep carbon cycle, they provide energy for the deep biosphere, and may have implications for the origins of life.

However, very little is known about how minerals influence organic reactions. A team of researchers from Arizona State University have demonstrated how a common mineral acts as a catalysts for specific hydrothermal organic reactions - negating the need for toxic solvents or expensive reagents.

At the heart of organic chemistry, aka carbon chemistry, is the covalent carbon-hydrogen bond (C-H bond) - a fundamental link between carbon and hydrogen atoms found in nearly every organic compound.

The essential ingredients controlling chemical reactions of organic compounds in hydrothermal systems are the organic molecules, hot pressurized water, and minerals, but a mechanistic understanding of how minerals influence hydrothermal organic reactivity has been virtually nonexistent.

The ASU team set out to understand how different minerals affect hydrothermal organic reactions and found that a common sulfide mineral (ZnS, or Sphalerite) cleanly catalyzes a fundamental chemical reaction - the making and breaking of a C-H bond.

Their findings are published in the Proceedings of the National Academy of Sciences. The paper was written by a transdisciplinary team of ASU researchers that includes: Jessie Shipp (2013 PhD in Chemistry and Biochemistry), Ian Gould, Lynda Williams, Everett Shock, and Hilairy Hartnett. The work was funded by the National Science Foundation.

"Typically you wouldn't expect water and an organic hydrocarbon to react. If you place an alkane in water and add some mineral it's probably just going to sit there and do nothing," explains first author Shipp.

"But at high temperature and pressure, water behaves more like an organic solvent, the thermodynamics of reactions change, and suddenly reactions that are impossible on the bench-top start becoming possible. And it's all using naturally occurring components at conditions that can be found in past and present hydrothermal systems."

A mineral in the mix
Previously, the team had found they could react organic molecules in hot pressurized water to produce many different types of products, but reactions were slow and conversions low. This work, however, shows that in the presence of sphalerite, hydrothermal reaction rates increased dramatically, the reaction approached equilibrium, and only one product formed. This very clean, very simple reaction was unexpected.

"We chose sphalerite because we had been working with iron sulfides and realized that we couldn't isolate the effects of iron from the effects of sulfur. So we tried a mineral with sulfur but not iron. Sphalerite is a common mineral in hydrothermal systems so it was a pretty good choice. We really didn't expect it to behave so differently from the iron sulfides," says Hartnett, an associate professor in the School of Earth and Space Exploration, and in the Department of Chemistry and Biochemistry at ASU.

This research provides information about exactly how the sphalerite mineral surface affects the breaking and making of the C-H bond. Sphalerite is present in marine hydrothermal systems i.e., black smokers, and has been the focus of recent origins-of-life investigations.

For their experiments, the team needed high pressures (1000 bar - nearly 1000 atm) and high temperatures (300 C) in a chemically inert container. To get these conditions, the reactants (sphalerite, water, and an organic molecule) are welded into a pure gold capsule and placed in a pressure vessel, inside a furnace.

When an experiment is done, the gold capsule is frozen in liquid nitrogen to stop the reaction, opened and allowed to thaw while submerged in dichloromethane to extract the organic products.

"This research is a unique collaboration because Dr. Gould is an organic chemist and you combine him with Dr. Hartnett who studies carbon cycles and environmental geochemistry, Dr. Shock who thinks in terms of thermodynamics and about high temperature environments, and Dr. Williams who is the mineral expert, and you get a diverse set of brains thinking about the same problems," says Shipp.

Hydrothermal organic reactions affect the formation, degradation, and composition of petroleum, and provide energy and carbon sources for microbial communities in deep sedimentary systems. The results have implications for the carbon cycle, astrobiology, prebiotic organic chemistry, and perhaps even more importantly for Green Chemistry (a philosophy that encourages the design of products and processes that minimize the use and generation of hazardous substances).

"This C-H bond activation is a fundamental step that is ultimately necessary to produce more complex molecules - in the environment those molecules could be food for the deep biosphere - or involved in the production of petroleum fuels," says Hartnett.

"The green chemistry side is potentially really cool - since we can conduct reactions in just hot water with a common mineral that ordinarily would require expensive or toxic catalysts or extremely harsh - acidic or oxidizing - conditions."

.


Related Links
Arizona State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Carbyne morphs when stretched
Houston TX (SPX) Jul 28, 2014
Applying just the right amount of tension to a chain of carbon atoms can turn it from a metallic conductor to an insulator, according to Rice University scientists. Stretching the material known as carbyne - a hard-to-make, one-dimensional chain of carbon atoms - by just 3 percent can begin to change its properties in ways that engineers might find useful for mechanically activated nanoscale ele ... read more


TECH SPACE
US food firm sorry over China 'bad meat' scandal

Meat turns up the heat

China detains five in expired meat scandal: police

The Real Price of Steak

TECH SPACE
Layered 2D crystals might enable superconductors at high temps

Quantum leap in lasers brightens future of quantum computing

Technique simplifies the creation of high-tech crystals

Moore's Law Gets Boost With Fundamental Chemistry Finding

TECH SPACE
Law of physics governs airplane evolution

France receives upgraded AWACS plane

Boeing boosts 2014 profit forecast after strong Q2

Sweden not a bidder for fighter procurement by Denmark

TECH SPACE
Ride-share service Lyft reaches deal with New York

Nissan quarterly profit soars on strong China demand

Really smart cars are ready to take the wheel

Using LED lighting to reduce streetlight glare

TECH SPACE
Chinese regulators visit Microsoft offices: Dow Jones

China's Xi eyes increased investment in Cuba

Failed Marx letter sale disappoints Chinese capitalists

Volvo Trucks mulls impact of US fine on marine engines

TECH SPACE
Urban heat boosts some pest populations 200-fold, killing red maples

Borneo deforested 30 percent over past 40 years

Reducing Travel Assisted Firewood Insect Spread

Walmart store planned for endangered Florida forest

TECH SPACE
NASA's Van Allen Probes Show How to Accelerate Electrons

ADS and Esri Take Satellite Imagery Services to a Premium Level

Ten-Year Endeavor: NASA's Aura Tracks Pollutants

Hyperspec Sensors Target Vegetation Fluorescence

TECH SPACE
A Crystal Wedding in the Nanocosmos

NIST shows ultrasonically propelled nanorods spin dizzyingly fast

Low cost technique improves properties of nanomaterials

Rice nanophotonics experts create powerful molecular sensor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.