GPS News  
CHIP TECH
Columbia engineers invent breakthrough millimeter-wave circulator IC
by Staff Writers
New York, NY (SPX) Oct 09, 2017


This is a chip microphotograph of the 25GHz fully-integrated non-reciprocal passive magnetic-free 45nm SOI CMOS circulator based on spatio-temporal conductivity modulation.

Columbia Engineering researchers, led by Harish Krishnaswamy, associate professor of electrical engineering, in collaboration with Professor Andrea Alu's group from UT-Austin, continue to break new ground in developing magnet-free non-reciprocal components in modern semiconductor processes. At the IEEE International Solid-State Circuits Conference in February, Krishnaswamy's group unveiled a new device: the first magnet-free non-reciprocal circulator on a silicon chip that operates at millimeter-wave frequencies (frequencies near and above 30GHz).

Most devices are reciprocal: signals travel in the same manner in forward and reverse directions. Nonreciprocal devices, such as circulators, on the other hand, allow forward and reverse signals to traverse different paths and therefore be separated. Traditionally, nonreciprocal devices have been built from special magnetic materials that make them bulky, expensive, and not suitable for consumer wireless electronics.

The team has developed a new way to enable nonreciprocal transmission of waves: using carefully synchronized high-speed transistor switches that route forward and reverse waves differently. In effect, it is similar to two trains approaching each other at super-high speeds that are detoured at the last moment so that they do not collide.

The key advance of this new approach is that it enables circulators to be built in conventional semiconductor chips and operate at millimeter-wave frequencies, enabling full-duplex or two-way wireless. Virtually all electronic devices currently operate in half-duplex mode at lower radio-frequencies (below 6GHz), and consequently, we are rapidly running out of bandwidth. Full-duplex communications, in which a transmitter and a receiver of a transceiver operate simultaneously on the same frequency channel, enables doubling of data capacity within existing bandwidth. Going to the higher mm-wave frequencies, 30GHz and above, opens up new bandwidth that is not currently in use.

"This gives us a lot more real estate," notes Krishnaswamy, whose Columbia High-Speed and Mm-wave IC (CoSMIC) Lab has been working on silicon radio chips for full duplex communications for several years. His method enables loss-free, compact, and extremely broadband non-reciprocal behavior, theoretically from DC to daylight, that can be used to build a wide range of non-reciprocal components such as isolators, gyrators, and circulators.

"This mm-wave circulator enables mm-wave wireless full-duplex communications, Krishnaswamy adds, "and this could revolutionize emerging 5G cellular networks, wireless links for virtual reality, and automotive radar."

The implications are enormous. Self-driving cars, for instance, require low-cost fully-integrated millimeter-wave radars. These radars inherently need to be full-duplex, and would work alongside ultra-sound and camera-based sensors in self-driving cars because they can work in all weather conditions and during both night and day. The Columbia Engineering circulator could also be used to build millimeter-wave full-duplex wireless links for VR headsets, which currently rely on a wired connection or tether to the computing device.

"For a smooth wireless VR experience, a huge amount of data has to be sent back and forth between the computer and the headset requiring low-latency bi-directional communication," says Krishnaswamy. "A mm-wave full-duplex transceiver enabled by our CMOS circulator could be a promising solution as it has the potential to deliver high speed data with low latency, in a small size with low cost."

The team, funded by sources including the National Science Foundation EFRI program, the DARPA SPAR program, and Texas Instruments, is currently working to improve the linearity and isolation performance of their circulator. Their long-term goal is to build a large-scale mm-wave full-duplex phased array system that uses their circulator.

CHIP TECH
Head of Taiwan microchip giant TSMC set to retire
Taipei (AFP) Oct 2, 2017
The man who founded Taiwan Semiconductor Manufacturing (TSMC) and made it the world's biggest microchip producer in terms of contracts announced Monday he would retire next year. Morris Chang, one of Taiwan's most revered business leaders, worked at US firm Texas Instruments and later headed Taiwan's Industrial Technology Research Institute before founding TSMC in 1987. Often called the ... read more

Related Links
Columbia University School of Engineering and Applied Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Global methane emissions from agriculture possibly much larger

Artificial light device boosts cows' milk yields by 9 percent

EU battle heats up over controversial weedkiller

First global pact backing indigenous land rights launched

CHIP TECH
New quantum computer chip uses sounds waves to store data

Move towards 'holy grail' of computing by creation of brain-like photonic microchips

Head of Taiwan microchip giant TSMC set to retire

Laser can control a current in graphene within one femtosecond

CHIP TECH
Australia has 'better understanding' of where MH370 might be

Airbus opens first plane-completion centre in China

A beautiful wing design solution inspired by owl feathers

Pilot shortage plagues Air Force

CHIP TECH
The U.S. needs at least twice as many charging points for EV

Uber competitor hits Paris roads with Chinese help

US car sales get boost from hurricane recovery

General Motors targets 20 all-electric models by 2023

CHIP TECH
EU targets China with tough rules on cheap imports

Chinese manufacturing accelerates for second straight month

$37.7 million bowl sets Chinese ceramic auction record

Macau casino scion rolls dice on Japan venture

CHIP TECH
Poland rejects EU evidence on primeval forest dispute

Forest loss means tropics emit more carbon than they trap: study

Brazil scraps bid to mine Amazon natural reserve

American oaks share a common northern ancestor

CHIP TECH
Global Airborne Mission to Make Ozone Hole Detour

New Radar Sensor Provides Clear Vision in Any Weather

Scientists monitor Silicon Valley's underground water reserves - from space

OSIRIS-REx views Pacifica on Earth Flyby

CHIP TECH
Tungsten offers nano-interconnects a path of least resistance

Nanoscale islands dot light-driven catalyst

Nanoparticle supersoap creates 'bijel' with potential as sculptable fluid

Creative use of noise brings bio-inspired electronic improvement









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.