GPS News  
EARTH OBSERVATION
CloudSat Exits the 'A-Train'
by Staff Writers
Pasadena CA (JPL) Feb 26, 2018

illustration only

Mission managers at NASA's Jet Propulsion Laboratory in Pasadena, California, this week lowered the orbit of the nearly 12-year-old CloudSat satellite following the loss of one of its reaction wheels, which control its orientation in orbit. While CloudSat's science mission will continue, it will no longer fly as part of the Afternoon Constellation, or A-Train - six Earth-monitoring satellites that fly in a coordinated orbit to advance our understanding of how Earth functions as a system.

CloudSat launched in 2006 to improve understanding of the role clouds play in our climate system. It joined the A-Train about a month later. In April 2011, the spacecraft experienced a technical issue affecting the ability of the battery to provide enough current to power all spacecraft systems during the time in each orbit when the spacecraft is on the dark side of the planet and the spacecraft's solar panels are not illuminated. In response, spacecraft engineers at Ball Aerospace in Boulder, Colorado, developed a new operational mode for CloudSat that enabled it to continue science operations, but only during the part of each orbit when the spacecraft is in sunlight.

Recognizing the vulnerable nature of the spacecraft battery and the age of other spacecraft systems, the CloudSat project developed a set of criteria under which they would exit the A-Train. One criterion was the loss of one of CloudSat's four reaction wheels. Although CloudSat can conduct science operations using only three reaction wheels, a subsequent loss of a second reaction wheel could leave the spacecraft unable to maneuver or change its orientation. Without the capability to maneuver, the satellite could drift too close to another A-Train satellite.

In June 2017, one of CloudSat's reaction wheels displayed significant friction. It was subsequently determined that the wheel would no longer be usable, thus triggering preparations to exit the A-Train.

On Feb. 22, CloudSat successfully executed two thruster burns, placing the satellite in an orbit below the altitude of the A-Train. After telemetry has been analyzed, mission managers will determine if a third orbit trim burn is necessary. CloudSat will remain in this "safe-exit orbit" while the project studies orbit options for continuing science operations even farther below the A-Train.

CloudSat is the first satellite to use an advanced cloud-profiling radar to "slice" through clouds to see their vertical structure, providing a completely new observational capability from space. The mission furnishes data that evaluate and improve the way clouds and precipitation are represented in global models, contributing to better predictions of clouds and their role in climate change.

Among the mission's many science accomplishments to date, CloudSat has provided the capability to look jointly at clouds and at the precipitation that comes from them, spotlighting flaws in climate model physics: models produce precipitation too frequently, and the modeled precipitation is lighter than actual observations. CloudSat directly quantified, for the first time, global snowfall and found that climate models overestimate Antarctic snowfall, many by more than 100 percent.

The A-Train satellites rush along together like a train on a "track" 705 miles (438 kilometers) above Earth's surface, flying minutes, and sometimes seconds, behind one another. Together, the satellites and their more than 15 scientific instruments work as a united, powerful tool to examine many different aspects of our home planet.

The A-Train has proven to be a successful integrated approach to observing Earth because it allows multiple instruments to observe the same location on Earth nearly simultaneously as they pass overhead. In addition to CloudSat (a partnership with the Canadian Space Agency and the U.S. Air Force), the other satellites currently in the A-Train include NASA's Aqua, Orbiting Carbon Observatory-2 and Aura spacecraft; the NASA/Centre National d'etudes Spatiales (CNES) Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft; and the Japan Aerospace Exploration Agency's Global Change Observation Mission - Water (GCOM-W1) satellite.

With CloudSat now in an orbit below the A-Train, it will occasionally pass beneath the constellation, enabling the mission to collect data in support of some of its pre-A-Train-exit data products.

+ For information on the A-Train please visit here


Related Links
CloudSat
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
New partnership aids sustainable growth with earth observations
Greenbelt MD (SPX) Feb 26, 2018
NASA and the nonprofit Conservation International are partnering to use global Earth observations from space to improve regional efforts that assess natural resources for conservation and sustainable management. Under a three-year agreement signed on Feb. 22, NASA will support two Conservation International-led initiatives, one focused on land ecosystems in Africa, the other on water resources along the Mekong River in Southeast Asia. NASA researchers will analyze and model remote-sensing data fro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
The secret to tripling the number of grains in sorghum and perhaps other staple crops

'Noah's Ark' seed vault chalks up a million crop varieties

New approach to improve nitrogen use, enhance yield, and promote flowering in rice

EU food agency says three pesticides harm bees as ban calls grow

EARTH OBSERVATION
Antiferromagnets prove their potential for spin-based information technology

Engineers develop flexible, water-repellent graphene circuits for washable electronics

New technology standard could shape the future of electronics design

Shape-shifting organic crystals use memory to improve plastic electronics

EARTH OBSERVATION
United Technologies Aerospace Systems awarded $2.5B for spare parts

Canada to accept bid from Boeing for new fighter jets

Air Force replaces T-38C with T-X for pilot training

Extreme conditions await MH370 recovery if wreckage found

EARTH OBSERVATION
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Huawei's AI-powered smartphone drives a Porsche

EARTH OBSERVATION
US, China clash on tariffs on Chinese aluminum foil

Standard Chartered brings back dividends as profits jump

Trump says China ties 'best ever' but trade a problem

Germany 'watchful' of Chinese investment in Daimler

EARTH OBSERVATION
Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees

Tropical trees use unique method to resist drought

EARTH OBSERVATION
Tracking the global footprint of industrial fishing

NASA joins international science team in exploring auroral cusp from Norway

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

New partnership aids sustainable growth with earth observations

EARTH OBSERVATION
UT Dallas team's microscopic solution may save researchers big time

Researchers invent light-emitting nanoantennas

Nanomushroom sensors: One material, many applications

USTC realizes strong indirect coupling in distant nanomechanical resonators









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.