GPS News  
CARBON WORLDS
Closing the carbon loop
by Staff Writers
Pittsburgh PA (SPX) Dec 13, 2016


This is an artist's conception of a catalyst (light blue and gray framework) capable of capturing CO2 (red and gray molecules on left side) and, along with hydrogen (white molecules) converting it to methanol (red, gray and white molecules on the right). Image courtesy Karl Johnson. For a larger version of this image please go here.

Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science and Technology.

Principal investigator is Karl Johnson, the William Kepler Whiteford Professor in the Swanson School's Department of Chemical and Petroleum Engineering. Postdoctoral associate Jingyun Ye is lead author.

The article "Catalytic Hydrogenation of CO2 to Methanol in a Lewis Pair Functionalized MOF" (DOI: 10.1039/C6CY01245K), is featured on the cover of Catalysis Science and Technology (vol. 6, no. 24) and builds upon Dr. Johnson's previous research that identified the two main factors for determining the optimal catalyst for turning atmospheric CO2 into liquid fuel. The research was conducted using computational resources at the University's Center for Simulation and Modeling.

Karl Johnson CST cover image"Capture and conversion of CO2 to methanol has the potential to solve two problems at once - reducing net carbon dioxide emissions while generating cleaner fuels," Dr. Johnson explained.

"Currently, however, it is a complex and expensive process that is not economically feasible. Because of this, we wanted to simplify the catalytic process as much as possible to create a sustainable and cost-effective method for converting CO2 to fuel - essentially to reduce the number of steps involved from several to one."

Johnson and Ye focused on computationally designing a catalyst capable of producing methanol from CO2 and H2 utilizing metal organic frameworks (MOFs), which potentially provide pathway for a single-process unit for carbon capture and conversion.

The MOFs could dramatically reduce the cost of carbon capture and conversion, bringing the potential of CO2 as a viable feedstock for fuels closer to reality.

"Methanol synthesis has been extensively studied because methanol can work in existing systems such as engines and fuel cells, and can be easily transported and stored. Methanol is also a starting point for producing many other useful chemicals," Dr. Johnson said.

"This new MOF catalyst could provide the key to close the carbon loop and generate fuel from CO2, analogously to how a plant converts carbon dioxide to hydrocarbons."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Pittsburgh
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Meadow restoration studied for potential to build carbon credits in California
Reno NV (SPX) Dec 12, 2016
Turning meadow restoration into cleaner air is the goal of researchers at the University of Nevada, Reno. The Soil Science Laboratory at the University recently partnered with the Earthwatch Institute, an international citizen science research organization, to better understand how restoration and plant communities relate to the soil carbon in Sierra Nevada mountain meadows. "Since Euro-Am ... read more


CARBON WORLDS
Soil pHertility mapped across the world

S. Korea expands cull to contain bird flu

Researchers use nuclear methods to study pest-resistance in corn

Surging methane emissions imperil climate goals

CARBON WORLDS
Further improvement of qubit lifetime for quantum computers

Stamping technique creates tiny circuits with electronic ink

3-D solutions to energy savings in silicon power transistors

Physicists decipher electronic properties of materials in work that may change transistors

CARBON WORLDS
Raytheon contracted to repair F/A-18 weapon assemblies

US State Dept approves slew of ME defense deals

China fighter jet claim 'untrue': Japan

U.S. Air Force taps Leidos for JMPS engineering services

CARBON WORLDS
Google self-driving car unit spins off as Waymo

Electric vehicle market footprint growing

China auto sales peak in November: group

US unveils 'V2V' plan for cars to talk to each other

CARBON WORLDS
China factory-gate inflation hits 5-year high

EU agrees tougher trade rules amid China row

China faces battle over market economy status

Trump tough talk on China worries US exporters

CARBON WORLDS
A roadmap for guiding development and conservation in the Amazon

Indonesia expands protection for peatlands, climate

Laser technique boosts aerial imaging of woodlands

Green groups pressure Spain over 'at risk' wetlands

CARBON WORLDS
Cloud formation: How feldspar acts as ice nucleus

What satellites can tell us about how animals will fare in a changing climate

Satellites, airport visibility readings shed light on troops' exposure to air pollution

ISRO launches earth observation satellite, Resourcesat-2A

CARBON WORLDS
New aspect of atom mimicry for nanotechnology applications

ANU demonstrates 'ghost imaging' with atoms

Supersonic spray yields new nanomaterial for bendable, wearable electronics

Researchers use acoustic waves to move fluids at the nanoscale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.