Subscribe free to our newsletters via your
. GPS News .




EARLY EARTH
Climate puzzle over origins of life on Earth
by Staff Writers
Manchester, UK (SPX) Oct 08, 2013


Another climate-warming theory - one the team wanted to test - is that the amount of nitrogen could have been higher in the ancient atmosphere, which would amplify the greenhouse effect of carbon dioxide and allow the Earth to remain ice-free.

The mystery of why life on Earth evolved when it did has deepened with the publication of a new study in the latest edition of the journal Science.

Scientists at the CRPG-CNRS University of Lorraine, The University of Manchester and the Institut de Physique du Globe de Paris have ruled out a theory as to why the planet was warm enough to sustain the planet's earliest life forms when the Sun's energy was roughly three-quarters the strength it is today.

Life evolved on Earth during the Archean, between 3.8 and 2.4 billion years ago, but the weak Sun should have meant the planet was too cold for life to take hold at this time; scientists have therefore been trying to find an explanation for this conundrum, what is dubbed the 'faint, young Sun paradox'.

"During the Archean the solar energy received at the surface of the Earth was about 20 to 25 % lower than present," said study author, Dr Ray Burgess, from Manchester's School of Earth, Atmospheric and Environmental Sciences.

"If the greenhouse gas composition of the atmosphere was comparable to current levels then the Earth should have been permanently glaciated but geological evidence suggests there were no global glaciations before the end of the Archean and that liquid water was widespread."

One explanation for the puzzle was that greenhouse gas levels - one of the regulators of the Earth's climate - were significantly higher during the Archean than they are today.

"To counter the effect of the weaker Sun, carbon dioxide concentrations in the Earth's atmosphere would need to have been 1,000 times higher than present," said lead author Professor Bernard Marty, from the CRPG-CNRS University of Lorraine.

"However, ancient fossil soils - the best indicators of ancient carbon dioxide levels in the atmosphere - suggest only modest levels during the Archean. Other atmospheric greenhouse gases were also present, in particular ammonia and methane, but these gases are fragile and easily destroyed by ultraviolet solar radiation, so are unlikely to have had any effect."

But another climate-warming theory - one the team wanted to test - is that the amount of nitrogen could have been higher in the ancient atmosphere, which would amplify the greenhouse effect of carbon dioxide and allow the Earth to remain ice-free.

The team analysed tiny samples of air trapped in water bubbles in quartz from a region of northern Australia that has extremely old and exceptionally well-preserved rocks.

"We measured the amount and isotopic abundances of nitrogen and argon in the ancient air," said Professor Marty. "Argon is a noble gas which, being chemically inert, is an ideal element to monitor atmospheric change. Using the nitrogen and argon measurements we were able to reconstruct the amount and isotope composition of the nitrogen dissolved in the water and, from that, the atmosphere that was once in equilibrium with the water."

The researchers found that the partial pressure of nitrogen in the Archean atmosphere was similar, possibly even slightly lower, than it is at present, ruling out nitrogen as one of the main contenders for solving the early climate puzzle.

Dr Burgess added: "The amount of nitrogen in the atmosphere was too low to enhance the greenhouse effect of carbon dioxide sufficiently to warm the planet. However, our results did give a higher than expected pressure reading for carbon dioxide - at odds with the estimates based on fossil soils - which could be high enough to counteract the effects of the faint young Sun and will require further investigation."

'Nitrogen Isotopic Composition and Density of the Archean Atmosphere,' published in Science on Friday

.


Related Links
University of Manchester
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Fossils push flowering plants back to early Triassic
Zurich, Switzerland (SPX) Oct 03, 2013
Flowering plants evolved from extinct plants related to conifers, ginkgos, cycads, and seed ferns. The oldest known fossils from flowering plants are pollen grains. These are small, robust and numerous and therefore fossilize more easily than leaves and flowers. An uninterrupted sequence of fossilized pollen from flowers begins in the Early Cretaceous, approximately 140 million years ago, ... read more


EARLY EARTH
Rural land use policies curb wildfire risks - to a point

New potential for nutrient-rich prairie fruits

European retailers embrace crooked fruit, ugly veggies

Google Street View is new arm against alien species

EARLY EARTH
CU, MIT breakthrough in photonics could allow for faster and faster electronics

Researchers demonstrate 'accelerator on a chip'

Spirals of Light May Lead to Better Electronics

Promising new alloy for resistive switching memory

EARLY EARTH
F-35 Lightning II Program Surpasses 10,000 Flight Hours

Iconic 'pilot-maker' marks 75 years in the skies

First F-35 For Australia Takes Shape In Fort Worth

Boeing says warplane sale hits US-Brazil turbulence

EARLY EARTH
China auto sales jump 19.7% in September

Toyota unveils cars with auto pilot

Ford expands in Asia, sees sales over 1 mln this year

London black taxis turn white for Australia

EARLY EARTH
China's September trade surplus down 44.7%

US should have 'wisdom' to solve debt problem: China

Foxconn admits to intern labour violations in China

Australia to build on ties with 'closest friend' Japan

EARLY EARTH
Historic trends predict future global reforestation unlikely

Forests most likely to continue shrinking

Death of a spruce tree

Alarming suicide rates among Brazil's Guarani Indians

EARLY EARTH
DroneMetrex Accomplishes Another Mapping Project Using Its Unique Topodrone-100

Flood maps from satellite data can help emergency response

Japan takes issue with Google maps over islands: reports

Australia's new prototype vehicle to improve Earth observation satellites' accuracy

EARLY EARTH
Densest array of carbon nanotubes grown to date

Nanoscale neuronal activity measured for the first time

Container's material properties affect the viscosity of water at the nanoscale

Molecules pass through nanotubes at size-dependent speeds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement