![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Clemson SC (SPX) Oct 04, 2007 Energy lost from hot engines could save billions of dollars if it could be captured and converted into electricity via thermoelectric devices, Clemson University physicist Terry Tritt told scientists gathered in Dallas for the world-renowned NanoTX '07 conference. "Thermoelectric generators are currently used in NASA's deep-space probes to convert the heat of radioactive elements to electrical energy, powering these systems for over 30 years," Tritt said. "Thermoelectric energy conversion is a solid-state technology that is environmentally friendly. One of the more promising 'down-to-earth' applications lies in waste-heat recovery in cars." Tritt said more than 60 percent of the energy that goes into an automotive combustion cycle is lost, primarily to waste heat through the exhaust or radiator system. "Even at the current efficiencies of thermoelectric devices, 7 to 8 percent, more than 1.5 billion gallons of diesel could be saved each year in the U.S. if thermoelectric generators were used on the exhaust of heavy trucks. That translates into billions of dollars saved," Tritt said. Clemson research focuses on developing higher-efficiency thermoelectric materials that could increase savings significantly. Research on the electrical and thermal properties of new materials could reduce the world's reliance on fossil fuels and has shown promise with two classes of materials: low-dimensional systems for enhanced electrical properties and increased phonon scattering that leads to inherently low thermal conductivity. Tritt heads up the Department of Energy's Center of Excellence in Thermoelectric Materials Research at Clemson, one of the leading laboratories for thermoelectric materials in the world. The national center focuses on the next generation of thermoelectric materials for power conversion and refrigeration. Researchers in physics, materials science and chemistry screen promising new classes of materials in order to achieve higher-performance thermoelectric materials. DOE recently renewed the program with more than $1 million a year in research funding for the next three years. NanoTX, presented by Semiconductor Industry Association, highlights advances in nanoscience and explains how nanotechnology is being used today and how it will impact a broad range of industries tomorrow, including electronics, energy, aerospace, defense, biomedicine, robotics, chemicals and more. Part of the conference included a Nobel Laureates reception in honor of the discovery of the buckeyball which opened up nanotechnology to the world. Related Links Clemson University All about the robots on Earth and beyond!
![]() ![]() The 58th International Astronautical Congress (IAC 2007) is taking place this week from 24 to 29 September in Hyderabad, India, with the theme 'Touching humanity: Space for improving quality of life'. One of the major space events of the year, this congress brings together some 2000 international space specialists providing a crossroad uniting the world's space agencies, astronautics institutes, aerospace scientific associations, firms involved in space activities and students. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |