GPS News  
ENERGY TECH
Chemists develop MRI-like technique to detect what ails batteries
by Staff Writers
New York NY (SPX) May 04, 2018

A team of chemists has developed an MRI-based technique that can quickly diagnose what ails certain types of batteries -- from determining how much charge remains to detecting internal defects -- without opening them up. Above is an illustration of measurement setup showing the cell and the holder with the detection medium (water in this case), and (d) showing both inserted within the magnet bore of an NMR magnet.

A team of chemists has developed an MRI-based technique that can quickly diagnose what ails certain types of batteries - from determining how much charge remains to detecting internal defects - without opening them up.

"The use of alternative energy and electrically powered vehicles will further increase the demand for better and safer batteries," observes Alexej Jerschow, a professor in New York University's Department of Chemistry, who led the research team. "However, there are currently only a very limited set of tools available to diagnose a battery's health without destroying the battery - our non-invasive technique offers a faster and more expansive method for making these assessments."

The work, described in the journal Nature Communications, also included Andrew Ilott, an NYU post-doctoral fellow at the time of the study and now a research investigator at Brisol-Myers Squibb; Mohaddese Mohammadi, an NYU doctoral candidate; and Christopher Schauerman and Matthew Ganter, research scientists at the Rochester Institute of Technology.

"Ensuring cell quality and safety is paramount to the manufacturing process that can save companies significant cost and prevent catastrophic cell failures from occurring," says Ganter, co-director of the RIT Battery Prototyping Center.

"This work not only supports the battery industry as a whole, but also the growing energy storage ecosystem in New York," adds Christopher Schauerman, co-director of the RIT Battery Prototyping Center.

The research focuses on rechargeable Lithium-ion (Li-ion) batteries, which are used in cell phones, laptops, and other electronics.

Notably, rechargeable batteries are at the heart of new technologies, including electric cars or storage for renewable energy sources.

However, recent malfunctions in hand-held devices and electric vehicles have highlighted the difficulties in designing batteries for these cutting-edge technologies. In addition, engineers often cannot determine the nature of defects or even impending battery failures without taking apart the device, which typically results in its destruction.

In general, magnetic resonance (MR) methods provide the ability to measure tiny changes in magnetic field maps and, as a result, create a picture of what lies inside a structure - for example, MRI (magnetic resonance imaging) can produce images of the human body's organs in a non-invasive manner.

In their Nature Communications work, the scientists adopted a procedure similar to MRI. Here, they measured tiny magnetic field changes surrounding the battery's electrochemical cells.

In their experiments, they examined Li-ion batteries in different states - various levels of charge (i.e., battery life) and conditions (i.e., some damaged and others not). Such cells were prepared by collaborators at RIT's Battery Prototyping Center. With these cells, the NYU team was able to match magnetic field changes surrounding the batteries to different internal conditions, revealing state of charge and certain defects. These included bent and missing electrodes as well as small foreign objects in the cell, which are flaws that can occur during the normal manufacturing process.

"With future enhancements to this method, it could provide a powerful means of predicting battery failures and battery lifetimes as well as facilitate the development of next-generation high-performance, high-capacity, and long-lasting or fast-charging batteries," adds Jerschow.

Research paper


Related Links
New York University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New materials for sustainable, low-cost batteries
Zurich, Switzerland (SPX) May 01, 2018
The energy transition depends on technologies that allow the inexpensive temporary storage of electricity from renewable sources. A promising new candidate is aluminium batteries, which are made from cheap and abundant raw materials. Scientists from ETH Zurich and Empa - led by Maksym Kovalenko, Professor of Functional Inorganic Materials - are among those involved in researching and developing batteries of this kind. The researchers have now identified two new materials that could bring about key ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Wood you like a drink? Japan team invents 'wood alcohol'

Fish farming can help relieve pressures on land resources, study shows

EU to ban bee-killing pesticides

Mediterranean fears bitter future for citrus crops

ENERGY TECH
Smart microchip can self-start and operate when battery runs out

Laser frequency combs may be the future of Wi-Fi

Cheaper and easier way found to make plastic semiconductors

Water-repellent surfaces can efficiently boil water, keep electronics cool

ENERGY TECH
Boeing, Airbus, GE among biggest losers from US Iran shift

French, US navy pilots train in the skies over Virginia

U.K. to receive Apache helicopter hardware from Lockheed

Navy taps Boeing to support Poseidon for Australian air force

ENERGY TECH
Uber shows off its vision for future 'flying taxi'

US environmental groups slam Ford over clean fuel stance

In latest diesel woes, Audi flags new emissions 'irregularities'

Should ethics or human intuition drive the moral judgments of driverless cars?

ENERGY TECH
US tells German businesses to stop trade in Iran 'immediately'

China's trade surplus with US grows

China vice premier to visit US for more trade talks

China moves to rope in its tech 'unicorns'

ENERGY TECH
China's native forests imperiled by proliferating tree plantations

Tribal protesters march on Brazil congress over land threats

Billions of gallons of water saved by thinning forests

Warming climate could speed forest regrowth in eastern US

ENERGY TECH
Moon holds key to improving satellite views of Earth

Twin spacecraft to weigh in on Earth's changing water

Earth's magnetic field is not about to reverse

China launches Zhuhai-1 remote sensing satellites

ENERGY TECH
A new Bose-Einstein condensate created at Aalto University

Course set to overcome mismatch between lab-designed nanomaterials and nature's complexity

This 2-D nanosheet expands like a Grow Monster

Robot developed for automated assembly of designer nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.