Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
Cheap, strong lithium-ion battery developed at USC
by Staff Writers
Los Angeles CA (SPX) Feb 14, 2013


File image.

Researchers at USC have developed a new lithium-ion battery design that uses porous silicon nanoparticles in place of the traditional graphite anodes to provide superior performance.

The new batteries-which could be used in anything from cell phones to hybrid cars-hold three times as much energy as comparable graphite-based designs and recharge within 10 minutes. The design, currently under a provisional patent, could be commercially available within two to three years.

"It's an exciting research. It opens the door for the design of the next generation lithium-ion batteries," said Chongwu Zhou, professor at the USC Viterbi School of Engineering, who led the team that developed the battery. Zhou worked with USC graduate students Mingyuan Ge, Jipeng Rong, Xin Fang and Anyi Zhang, as well as Yunhao Lu of Zhejiang University in China. Their research was published in Nano Research in January.

Researchers have long attempted to use silicon, which is cheap and has a high potential capacity, in battery anodes. (Anodes are where current flows into a battery, while cathodes are where current flows out.) The problem has been that previous silicon anode designs, which were basically tiny plates of the material, broke down from repeated swelling and shrinking during charging/discharging cycles and quickly became useless.

Last year, Zhou's team experimented with porous silicon nanowires that are less than 100 nanometers in diameter and just a few microns long. The tiny pores on the nanowires allowed the silicon to expand and contract without breaking while simultaneously increasing the surface area - which in turn allows lithium ions to diffuse in and out of the battery more quickly, improving performance.

Though the batteries functioned well, the nanowires are difficult to manufacture en masse. To solve the problem, Zhou's team took commercially available nanoparticles-tiny silicon spheres-and etched them with the same pores as the nanowires. The particles function similarly and can be made in any quantity desired.

Though the silicon nanoparticle batteries currently last for just 200 recharge cycles (compared to an average of 500 for graphite-based designs), the team's older silicon nanowire-based design lasted for up to 2,000 cycles, which was reported in Nano Lett last April. Further development of the nanoparticle design should boost the battery's lifespan, Zhou said.

"The easy method we use may generate real impact on battery applications in the near future," Zhou said.

Future research by the group will focus finding a new cathode material with a high capacity that will pair well with the porous silicon nanowires and/or porous silicon nanoparticles to create a completely redesigned battery.

.


Related Links
University of Southern California
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
New batteries can recharge in 10 minutes
Los Angeles (UPI) Feb 12, 2013
Researchers in California say they've developed a lithium-ion battery using nanoparticles that has more energy capacity and recharges more quickly. Scientists at the University of Southern California report using porous silicon nanoparticles in place of the traditional graphite anodes has yielded superior battery performance, holding three times as much energy as graphite-based designs ... read more


ENERGY TECH
X-rays reveal uptake of nanoparticles by soya bean crops

Widely used nanoparticles enter soybean plants from farm soil

Nitrogen from pollution, natural sources causes growth of toxic algae

Pioneering Finns share leftovers to cut waste

ENERGY TECH
New materials may be computer breakthrough

Researchers create 'building block' of quanutm networks

European Investments in Advanced Computing Systems Deliver Results

A review of the rapidly evolving field of topological insulator hybrid structures

ENERGY TECH
Boeing and Elbit Systems to Collaborate on Aircraft Defense Solutions

F-35A Completes 3-Year Clean Wing Flutter Testing Program

E-2D Advanced Hawkeye Approved For Full-Rate Production

Major fighter jet deal, trade dominate Hollande's India trip

ENERGY TECH
Nissan profit tumbles on China, Europe woes

Japan's Suzuki sees April-December net profit rise 19%

Japan's Mazda swings back to profit

China auto sales hit record in January: industry group

ENERGY TECH
Global gold demand falls in 2012: WGC report

Amazon seeks relaxation of India e-commerce rules

India IT exports picking up steam

Mercosur seeks Canada deal, but Cuba looms

ENERGY TECH
Lungs of the planet reveal their true sensitivity to global warming

Southwest regional warming likely cause of pinyon pine cone decline

Tree die-off triggered by hotter temperatures

Taiwan's 'King of the Trees' fights for the forests

ENERGY TECH
LDCM 'Doing Great' in Orbit

US launches Earth observation satellite

NightPod Images Bring Earth to Light From Space Station

Landsat Data Continuity Mission Awaits Liftoff

ENERGY TECH
Giving transplanted cells a nanotech checkup

Boston College researchers' unique nanostructure produces novel 'plasmonic halos'

Using single quantum dots to probe nanowires

A new genre of 'intelligent' micro- and nanomotors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement