Subscribe free to our newsletters via your
. GPS News .




INTERNET SPACE
Cause of LED Efficiency Droop Finally Revealed
by Staff Writers
Santa Barbara, CA (SPX) Apr 29, 2013


LED emitting light under forward bias in an ultra high vacuum chamber allowing simultaneous electron emission energy. Credit: Ecole Polytechnique, Ph. Lavialle.

Researchers at University of California, Santa Barbara, in collaboration with colleagues at the Ecole Polytechnique in France, have conclusively identified Auger recombination as the mechanism that causes light emitting diodes (LEDs) to be less efficient at high drive currents.

Until now, scientists had only theorized the cause behind the phenomenon known as LED "droop"-a mysterious drop in the light produced when a higher current is applied. The cost per lumen of LEDs has held the technology back as a viable replacement for incandescent bulbs for all-purpose commercial and residential lighting.

This could all change now that the cause of LED efficiency droop has been explained, according to researchers James Speck and Claude Weisbuch of the Center for Energy Efficient Materials at UCSB, an Energy Frontier Research Center sponsored by the U.S. Department of Energy.

Knowledge gained from this study is expected to result in new ways to design LEDs that will have significantly higher light emission efficiencies. LEDs have enormous potential for providing long-lived high quality efficient sources of lighting for residential and commercial applications. The U.S. Department of Energy recently estimated that the widespread replacement of incandescent and fluorescent lights by LEDs in the U.S. could save electricity equal to the total output of fifty 1GW power plants.

"Rising to this potential has been contingent upon solving the puzzle of LED efficiency droop," commented Speck, professor of Materials and the Seoul Optodevice Chair in Solid State Lighting at UCSB. "These findings will enable us to design LEDs that minimize the non-radiative recombination and produce higher light output."

"This was a very complex experiment-one that illustrates the benefits of teamwork through both an international collaboration and a DOE Energy Frontier Research Center," commented Weisbuch, distinguished professor of Materials at UCSB. Weisbuch, who is also a faculty member at the Ecole Polytechnique in Paris, enlisted the support of his colleagues Lucio Martinelli and Jacques Peretti. UCSB graduate student Justin Iveland was a key member of the team working both at UCSB and Ecole Polytechnique.

In 2011, UCSB professor Chris van de Walle and colleagues theorized that a complex non-radiative process known as Auger recombination was behind nitride semiconductor LED droop, whereby injected electrons lose energy to heat by collisions with other electrons rather than emitting light.

A definitive measurement of Auger recombination in LEDs has now been accomplished by Speck, Weisbuch, and their research team.

The experiment used an LED with a specially prepared surface that permitted the researchers to directly measure the energy spectrum of electrons emitted from the LED. The results unambiguously showed a signature of energetic electrons produced by the Auger process.

The results of their work are to be published in the journal Physical Review Letters. A similar version of the accepted manuscript can be found here. This work was funded by the UCSB Center for Energy Efficient Materials, an Energy Frontier Research Center of the US Department of Energy, Office of Science. Additional support for the work at Ecole Polytechnique was provided by the French government.

.


Related Links
Center for Energy Efficient Materials at UCSB
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERNET SPACE
As Google Glass appears, does personal privacy vanish?
Washington DC (UPI) Apr 28, 2013
Every jump in technology brings with it adjustments society must make and rules it must develop if the new paradigm is to be considered acceptable, and Google Glass - a wearable computer that can record video surreptitiously - presents just such a paradigm shift. Even Google Chairman Eric Schmidt is being open about it, saying it will require a "new etiquette," admitting there are pla ... read more


INTERNET SPACE
India predicted to receive normal monsoon rains

EU set to ban pesticides blamed for decline of bees: source

EU to ban pesticides linked to bee deaths

Deep, Permeable Soils Buffer Impacts of Agricultural Fertilization on Streams and Rivers in Southern Amazon

INTERNET SPACE
New Research Findings Open Door to Zinc-Oxide-based UV Lasers, LED Devices

New Nanowire Structure Has Potential to Increase Semiconductor Applications

Scientists provide 'new spin' on emerging quantum technologies

Germanium made compatible

INTERNET SPACE
Australia unveils its F-35 JSF 'Iron Bird'

China welcomes French president with Airbus deal

Multifunction Advanced Data Link Flight Tested For F-35 Program

Brazil drops plan to build AgustaWestland helicopter

INTERNET SPACE
Honda's annual net profit soars to $3.7 bn

Chinese prefer gas-guzzling vehicles?

Auto makers show off vehicles in key China market

GM by any other name? Car firms face brand puzzle in China

INTERNET SPACE
France eyes becoming trading hub for China yuan

Bill to collect Internet purchase sales tax looks set for Senate OK

Hong Kong's pursuit of luxury defies Western gloom

Southeast Asian leaders talk China, trade

INTERNET SPACE
Study Led by NUS Scientists Reveals Escalating Cost of Forest Conservation

Wildfires can burn hot without ruining soil

Indonesia moves towards approving deforestation plan

Brazil urged to stop invading indigenous lands

INTERNET SPACE
NASA's HyspIRI: Seeing the Forest and the Trees and More

Satrec Initiative of South Korea Continues Collaboration with UAE for DubaiSat-3 Program

Google says Street View data now take in 50 countries

DMCii increases downlink capacity with Svalbard ground station facilities

INTERNET SPACE
Nanowires grown on graphene have surprising structure

UNL team's discovery yields supertough, strong nanofibers

Scientists image nanoparticles in action

Scientists see nanoparticles form larger structures in real time




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement