Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Catalyst in a teacup: New approach to chemical reduction
by Staff Writers
Sydney, Australia (SPX) Mar 29, 2013


The new catalyst-based approach to chemical reduction works well at room temperature and in air - and can even be carried out in a teacup. Credit: University of New South Wales.

Taking their inspiration from Nature, scientists at the University of New South Wales have developed a new method for carrying out chemical reduction - an industrial process used to produce fuels and chemicals that are vital for modern society.

Their catalyst-based approach has the big advantages that it uses cheap, replenishable reagents and it works well at room temperature and in air - so much so, it can even be carried out safely in a teacup.

The research, by a team led by Associate Professor Stephen Colbran, of the UNSW School of Chemistry, has been published as the cover of the prestigious journal, Angewandte Chemie. The catalyst they designed mimics the activity of naturally occurring enzymes that catalyse reduction, such as alcohol dehydrogenase in yeast that helps produce alcohol from sugar.

"Industrial chemical reduction processes underpin human existence, but are unsustainable because they irreversibly consume reagents that are made at prohibitively high energy cost," Dr Colbran says. "We believe our new biomimetic design may have wide applications in chemical reduction."

Chemical reduction involves the addition of electrons to a substance, and is the basis of making many fuels, including the sugars that plants produce during photosynthesis.

In industry, molecular hydrogen and reactive reagents such as sodium borohydride are used as reducing agents during the production of pharmaceuticals, agrichemicals and ammonia for fertiliser.

"Manufacture of these substances is energy costly, leads to the release of carbon dioxide and they are difficult to handle and store," Dr Colbran says. "So we decided to look at nature to see how nature does it."

The team combined a transition metal complex containing rhodium with a Hantzsch dihydropyridine - an organic donor of a hydride ion similar to biological nicotinamides - to produce the new bio-inspired catalyst. They tested it on a common process - reduction of imines - and were surprised to find it worked in ambient conditions with more than 90 per cent efficiency in most cases.

Dr Colbran even tested it out in a teacup. "I thought it would be a bit of fun. And it makes a serious point - our catalyst system is very easy to use."

By coincidence, the research comes exactly a century after Alfred Werner won a Nobel Prize for Chemistry for his work on the structures of transition metal complexes. As well, his PhD supervisor, Arthur Hantzsch, discovered the way to synthesise dihydropyridines.

"It has only taken 100 years to combine the work of doctoral adviser and student into one molecule," Dr Colbran says.

A future aim is to try to convert the greenhouse gas, carbon dioxide, into the renewable fuel, methanol, much more efficiently.

.


Related Links
University of New South Wales
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
CO2 could produce valuable chemical cheaply
Providence RI (SPX) Mar 29, 2013
A key advance, newly reported by chemists from Brown and Yale Universities, could lead to a cheaper and more sustainable way to make acrylate, an important commodity chemical used to make materials from polyester fabrics to diapers. Chemical companies churn out billions of tons of acrylate each year, usually by heating propylene, a compound derived from crude oil. "What we're interested in ... read more


TECH SPACE
Climate change rewrites world wine list

Pesticides short-circuit bee brains: study

Brazil grocers pledge to shun Amazon meat

Brazil supermarkets to keep Amazon meat off shelves

TECH SPACE
Ultra-precision positioning

Berkeley Lab Researchers Use Metamaterials to Observe Giant Photonic Spin Hall Effect

Oregon researchers synthesize negative-charge carrying molecular structures

Electrical signals dictate optical properties

TECH SPACE
Peru mulls replacing aged air force jets

Two Chinese airlines record falls in 2012 profits

France says Malaysia can build jets if it buys Rafale

Navy tasks Virginia Tech research team with reducing deafening roar of fighter jets

TECH SPACE
Japan venture to bring electric tuk-tuks to Asia

China car maker BYD reports profit plunge

Man creates car that runs on liquid air

Greener cars could slash US pollution by 2050: study

TECH SPACE
BRICS voice concern on violence in Iran, Syria

BRICS: a dynamic group dominated by China

China, Japan, S. Korea open free trade talks

Resources giveaway in Latin America tramples human rights and environment

TECH SPACE
Decreased Water Flow May be Trade-off for More Productive Forest

Middle ground between unlogged forest and intensively managed lands

Hunting for meat impacts on rainforest

Disney invests in Peru to prevent deforestation

TECH SPACE
How hard is it to 'de-anonymize' cellphone data?

Wearable system can map difficult areas

A Closer Look at LDCM's First Scene

CSTARS Awarded Funding Over Three Years By Office of Naval Research

TECH SPACE
Imaging methodology reveals nano details not seen before

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators

Scientists develop innovative twists to DNA nanotechnology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement