Subscribe free to our newsletters via your
. GPS News .




CLIMATE SCIENCE
'Carbon sink' detected underneath world's deserts
by Staff Writers
Washington DC (SPX) Jul 30, 2015


File image.

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according to the new research.

Humans add carbon dioxide to the atmosphere through fossil fuel combustion and deforestation. About 40 percent of this carbon stays in the atmosphere and roughly 30 percent enters the ocean, according to the University Corporation for Atmospheric Research. Scientists thought the remaining carbon was taken up by plants on land, but measurements show plants don't absorb all of the leftover carbon. Scientists have been searching for a place on land where the additional carbon is being stored--the so-called "missing carbon sink."

The new study suggests some of this carbon may be disappearing underneath the world's deserts - a process exacerbated by irrigation. Scientists examining the flow of water through a Chinese desert found that carbon from the atmosphere is being absorbed by crops, released into the soil and transported underground in groundwater--a process that picked up when farming entered the region 2,000 years ago.

Underground aquifers store the dissolved carbon deep below the desert where it can't escape back to the atmosphere, according to the new study.

The new study estimates that because of agriculture roughly 14 times more carbon than previously thought could be entering these underground desert aquifers every year. These underground pools that taken together cover an area the size of North America may account for at least a portion of the "missing carbon sink" for which scientists have been searching.

"The carbon is stored in these geological structures covered by thick layers of sand, and it may never return to the atmosphere," said Yan Li, a desert biogeochemist with the Chinese Academy of Sciences in Urumqi, Xinjiang, and lead author of the study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union. "It is basically a one-way trip."

Knowing the locations of carbon sinks could improve models used to predict future climate change and enhance calculations of the Earth's carbon budget, or the amount of fossil fuels humans can burn without causing major changes in the Earth's temperature, according to the study's authors.

Although there are most likely many missing carbon sinks around the world, desert aquifers could be important ones, said Michael Allen, a soil ecologist from the Center for Conservation Biology at the University of California-Riverside who was not an author on the new study.

If farmers and water managers understand the role heavily-irrigated inland deserts play in storing the world's carbon, they may be able to alter how much carbon enters these underground reserves, he said.

"This means [managers] can take practical steps that could play a role in addressing carbon budgets," said Allen.

Examining desert water
To find out where deserts tucked away the extra carbon, Li and his colleagues analyzed water samples from the Tarim Basin, a Venezuela-sized valley in China's Xinjiang region. Water draining from rivers in the surrounding mountains support farms that edge the desert in the center of the basin.

The researchers measured the amount of carbon in each water sample and calculated the age of the carbon to figure out how long the water had been in the ground.

The study shows the amount of carbon dioxide dissolved in the water doubles as it filters through irrigated fields. The scientists suggest carbon dioxide in the air is taken up by the desert crops. Some of this carbon is released into the soil through the plant's roots. At the same time, microbes also add carbon dioxide to the soil when they break down sugars in the dirt. In a dry desert, this gas would work its way out of the soil into the air. But on arid farms, the carbon dioxide emitted by the roots and microbes is picked up by irrigation water, according to the new study.

In these dry regions, where water is scarce, farmers over-irrigate their land to protect their crops from salts that are left behind when water used for farming evaporates. Over-irrigating washes these salts, along with carbon dioxide that is dissolved in the water, deeper into the earth, according to the new study.

Although this process of carbon burial occurs naturally, the scientists estimate that the amount of carbon disappearing under the Tarim Desert each year is almost 12 times higher because of agriculture. They found that the amount of carbon entering the desert aquifer in the Tarim Desert jumped around the time the Silk Road, which opened the region to farming, begin to flourish.

After the carbon-rich water flows down into the aquifer near the farms and rivers, it moves sideways toward the middle of the desert, a process that takes roughly 10,000 years.

Any carbon dissolved in the water stays underground as it makes its way through the aquifer to the center of the desert, where it remains for thousands of years, according to the new study.

Estimating carbon storage
Based on the various rates that carbon entered the desert throughout history, the study's authors estimate 20 billion metric tons (22 billion U.S. tons) of carbon is stored underneath the Tarim Basin desert, dissolved in an aquifer that contains roughly 10 times the amount of water held in the North American Great Lakes.

The study's authors approximate the world's desert aquifers contain roughly 1 trillion metric tons (1 trillion U.S. tons) of carbon--about a quarter more than the amount stored in living plants on land.

Li said more information about water movement patterns and carbon measurements from other desert basins are needed to improve the estimate of carbon stored underneath deserts around the globe.

Allen said the new study is "an early foray" into this research area. "It is as much a call for further research as a definitive final answer," he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Geophysical Union
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Northern Eurasia carbon sink remains largely unknown
Amherst MA (SPX) Jul 30, 2015
In a new assessment of nine state-of-the-art climate model simulations provided by major international modeling centers, Michael Rawlins at the University of Massachusetts Amherst and colleagues found broad disagreement in the amount of atmospheric carbon dioxide (CO2) annually sequestered in tundra and boreal ecosystems of Northern Eurasia, a vast, understudied region of the world. Rawlin ... read more


CLIMATE SCIENCE
Food tech startups raking in cash: survey

LED sole-source lighting effective in bedding plant seedling production

Rice grains hold big promise for greenhouse gas reductions, bioenergy

How a kernel got naked and corn became king

CLIMATE SCIENCE
New type of modulator for the future of data transmission

This could replace your silicon computer chips

Spintronics: Molecules stabilizing magnetism

Intel and Micron memory chip tuned to data driven age

CLIMATE SCIENCE
MH370 clues mount as wreckage identified as Boeing 777

Airbus Helicopters announces factory acceptance of training aircraft

Harris, CPqD to support Brazilian Air Force air traffic control

Delta to buy stake in China Eastern Airlines for $450 mn

CLIMATE SCIENCE
Uber valuation tops $50 bn with latest funding: report

Toyota falls behind VW in world's biggest automaker race

Nissan's three-month profit up 36% on sales in US, China

GM to invest $5 bn on new Chevrolet for emerging markets

CLIMATE SCIENCE
WTO strikes 'landmark' deal to cut tariffs on IT products

British PM heads to Southeast Asia with trade, IS on agenda

Maldives to allow foreigners to own land

Wal-Mart buys remaining shares of Chinese firm Yihaodian

CLIMATE SCIENCE
Drivers of temporal changes in temperate forest plant diversity

Myanmar amnesty frees Chinese loggers, political prisoners

Mangroves help protect against sea level rise

China ire as Myanmar jails scores for illegal logging

CLIMATE SCIENCE
NASA satellite images Alaska's scorched earth

California 'Rain Debt' Equal to Average Full Year of Precipitation

Space-eye-view could help stop global wildlife decline

Satellites peer into rock 50 miles beneath Tibetan Plateau

CLIMATE SCIENCE
Breakthrough in knowledge of how nanoparticles grow

On the way to breaking the terahertz barrier for graphene nanoelectronics

A most singular nano-imaging technique

Plantations of nanorods on carpets of graphene capture the Sun's energy




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.