. GPS News .




.
TECTONICS
Capturing the Boundary Between Magma and Water
by Staff Writers
Panama City, Panama (SPX) Jul 05, 2011

Granoblastic dikes samples were recovered in abundance by fishing tools during successive hole remediation operations. Sumiyo Miyashita and Yoshiko Adashi, from Niigata University, Japan, examine large rock samples from Hole 1256D. (Credit: IODP)

Integrated Ocean Drilling Program (IODP) Expedition 335 Superfast Spreading Rate Crust 4 recently completed operations in Ocean Drilling Program (ODP) Hole 1256D, a deep scientific borehole that extends more than 1500 meters below the seafloor into the Pacific Ocean's igneous crust - rocks that formed through the cooling and crystallization of magma, and form the basement of the ocean floor.

An international team of scientists led by co-chief scientists Damon Teagle (National Oceanographic Center Southampton, University of Southampton in the UK) and Benoit Ildefonse (CNRS, Universite Montpellier 2 in France) returned to ODP Hole 1256D aboard the scientific research vessel, JOIDES Resolution, to sample a complete section of intact oceanic crust down into gabbros. This expedition was the fourth in a series and builds on the efforts of three expeditions in 2002 and 2005.

Gabbros are coarse-grained intrusive rocks formed by the slow cooling of basaltic magmas. They make up the lower two-thirds of the ocean crust. The intrusion of gabbros at the mid-ocean ridges is the largest igneous process active on our planet with more than 12 cubic kilometers of new magma from the mantle intruded into the crust each year. The minerals, chemistry, and textures of gabbroic rocks preserve records of the processes that occur deep within the Earth's mid-ocean ridges, where new ocean crust is formed.

"The formation of new crust is the first step in Earth's plate tectonic cycle," explained Teagle. "This is the principal mechanism by which heat and material rise from within the Earth to the surface of the planet. And it's the motion and interactions of Earth's tectonic plates that drive the formation of mountains and volcanoes, the initiation of earthquakes, and the exchange of elements (such as carbon) between the Earth's interior, oceans, and atmosphere."

"Understanding the mechanisms that construct new tectonic plates has been a major, long-standing goal of scientific ocean drilling," added Ildefonse, "but progress has been inhibited by a dearth of appropriate samples because deep drilling (at depths greater than 1000 meters into the crust) in the rugged lavas and intrusive rocks of the ocean crust continues to pose significant technical challenges."

ODP Hole 1256D lies in the eastern equatorial Pacific Ocean about 900 kilometers to the west of Costa Rica and 1150 kilometers east of the present day East Pacific Rise. This hole is in 15 million year old crust that formed during an episode of "superfast" spreading at the ancient East Pacific Rise, when the newly formed plates were moving apart by more than 200 millimeters per year (mm/yr).

"Although a spreading rate of 200 mm/yr is significantly faster than the fastest spreading rates on our planet today, superfast-spread crust was an attractive target," stated Teagle, "because seismic experiments at active mid-ocean ridges indicated that gabbroic rocks should occur at much shallower depths than in crust formed at slower spreading rates. In 2005, we recovered gabbroic rocks at their predicted depth of approximately 1400 meters below the seafloor, vindicating the overall 'Superfast' strategy."

Previous expeditions to Hole 1256D successfully drilled through the erupted lavas and thin (approximately one-meter-wide) intrusive "dikes" of the upper crust, reaching into the gabbroic rocks of the lower crust.

The drilling efforts of Expedition 335 were focused just below the 1500-meter mark in the critical transition zone from dikes to gabbros, where magma at 1200 degrees C exchanges heat with super-heated seawater circulating within cracks in the upper crust. This heat exchange occurs across a narrow thermal boundary that is perhaps only a few tens of meters thick.

In this zone, the intrusion of magma causes profound textural changes to the surrounding rocks, a process known as contact metamorphism.

In the mid-ocean ridge environment this results in the formation of very fine-grained granular rocks, called granoblastic basalts, whose constituent minerals recrystallize at a microscopic scale and become welded together by magmatic heat. The resulting metamorphic rock is as hard as any formation encountered by ocean drilling and sometimes even tougher than the most resilient of hard formation drilling and coring bits.

Expedition 335 reentered Hole 1256D more than five years after the last expedition to this site. The expedition encountered and overcame a series of significant engineering challenges, each of which was unique, although difficulties were not unexpected when drilling in a deep, uncased, marine borehole into igneous rocks.

The patient, persistent efforts of the drilling crew successfully cleared a major obstruction at a depth of 920 that had initially prevented reentry into the hole to its full depth of 1507 meters.

Then at the bottom of the hole the very hard granular rocks that had proved challenging during the previous Superfast expedition were once more encountered. Although there may only be a few tens of meters of these particularly tenacious granoblastic basalts, their extreme toughness once more proved challenging to sample- resulting in the grinding down of one of the hardest formation coring bits into a smooth stump.

A progressive, logical course of action was then undertaken to clear the bottom of the hole of metal debris from the failed coring bit and drilling cuttings. This effort required the innovative use of hole-clearing equipment such as large magnets, and involved over 240 kilometers of drilling pipe deployments (trips) down into the hole and back onto the ship. (The total amount of pipe "tripped" was roughly equivalent to the distance from Paris to the English coast, or from New York City to Philadelphia, or Tokyo to Niigata).

These efforts returned hundreds of kilograms of rocks and drill cuttings, including large blocks (up to 5 kilograms) of the culprit granoblastic basalts that hitherto had only been very poorly recovered through coring. A limited number of gabbro boulders were also recovered, indicating that scientists are tantalizingly close to breaking through into the gabbroic layer.

Expedition 335 operations also succeeded in clearing Hole 1256D of drill cuttings, much of which appear to have been circulating in the hole since earlier expeditions.

"We recovered a remarkable sample suite of granoblastic basalts along with minor gabbros, providing a detailed picture of a rarely sampled, yet critical interval of the oceanic crust," Ildefonse observed. "Most importantly," he added, "the hole has been stabilized and cleared to its full depth, and is ready for deepening in the near future." For more information about the JOIDES Resolution, visit www.joidesresolution.org.




Related Links
Integrated Ocean Drilling Program Management International
Tectonic Science and News

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECTONICS
Hawaiian hotspot variability attributed to small-scale convection
Honolulu HI (SPX) Jul 04, 2011
Small scale convection at the base of the Pacific plate has been simulated in a model of mantle plume dynamics, enabling reasearchers to explain the complex set of observations at the Hawaiian hotspot, according to a new study posted online in the June 26th edition of Nature Geoscience. "A range of observations cannot be explained by the classical version of the mantle plume concept," says ... read more


TECTONICS
Down-under digestive microbes could help lower methane gas from livestock

EU bans imports of Egyptian seeds

Global warming could alter the US premium wine industry in 30 years, says Stanford study

Farm animal disease to increase with climate change

TECTONICS
Magnetic memory and logic could achieve ultimate energy efficiency

Scientists Hope to Get Glimpse of Adolescent Universe from Revolutionary Instrument-on-a-Chip

Change in material boosts prospects of ultrafast single-photon detector

The future of chip manufacturing

TECTONICS
Swiss solar plane returns after European flights

JAL plans budget carrier with Jetsar: report

China to buy 88 A320 planes: Airbus

EU stands firm as polluting tax row threatens Airbus sales

TECTONICS
Toyota to cut work at Brazil, Argentina plants

Hydrogenics Awarded Hydrogen Fueling Station in Germany

Diesel cars gain traction slowly in US market

US automakers post big sales gains in June

TECTONICS
China to pour $9 bn into Brazil this year: report

Antwerp diamond industry ties up with China

Spain aims to welcome one million Chinese tourists in 2020

China's export restrictions on raw materials illegal: WTO

TECTONICS
Using DNA in fight against illegal logging

Brazil revokes Amazon logging permits after deaths

Tropical Birds Return to Harvested Rainforest Areas in Brazil

Analyzing Agroforestry Management

TECTONICS
India Remote Sensing Data Policy Revised

NASA Flies Greenhouse Gas Mission Over Nevada Salt Flat

La Nina's Exit Leaves Climate Forecasts in Limbo

NASA satellite gets 2 tropical cyclones in 1 shot

TECTONICS
City dwellers produce as much CO2 as countryside people do

Graphene may gain an 'on-off switch,' adding semiconductor to long list of achievements

Building 2D graphene metamaterials and 1-atom-thick optical devices

Singapore researchers invent broadband graphene polarizer


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement