GPS News  
SOLAR SCIENCE
CLASP Sounding Rocket Mission Opens New Research Window in Solar Physics
by Molly Porter for MSFC News
Huntsville AL (SPX) May 24, 2017


NASA and a global science team have used observations from CLASP sounding rocket mission to provide the first ultraviolet polarization measurements of the sun's outer atmosphere. Credits: NAOJ, JAXA, NASA/MSFC; background solar image: NASA/SDO)

A team of NASA scientists and international partners used data from the the high-precision science instrument CLASP - the Chromospheric Lyman-Alpha Spectro-Polarimeter - to provide the first-ever polarization measurements of ultraviolet light emitted from the sun's outer atmosphere. Previous polarization measurements were restricted to visible light that is emitted from the sun's surface.

By looking at the sun with this new technique, heliophysicists - who study how our dynamic sun drives change in the very physics of space around Earth and other planets - now can answer fundamental questions about the sun's chromosphere, an important layer of the outer atmosphere of our turbulent star.

"We can't directly image everything that's going on in the solar atmosphere, but studying the polarization of ultraviolet light reveals the physics of the magnetic fields in the upper chromosphere and the transition region to better understand activity in this enigmatic region," said Amy Winebarger, CLASP's principal investigator at NASA's Marshall Space Flight Center in Huntsville, Alabama.

Her colleague David McKenzie, a fellow NASA heliophysicist, concurred. "Understanding the role of the magnetic field is vital to predicting powerful solar activity and protecting space and Earth technology from potential damage," he said.

Papers describing the findings appears in the April 2017 issue of The Astrophysical Journal Letters and the May 2017 issue of The Astrophysical Journal.

The CLASP instrument measures ultraviolet light from the sun which cannot penetrate Earth's atmosphere. To make this measurement, this instrument was flown aboard a sounding rocket on a five-minute flight above Earth's atmosphere on September 3, 2015. Thanks to CLASP's success, a second international team - with McKenzie as principal investigator - is now planning to launch CLASP 2 via sounding rocket in 2019. This second flight of CLASP will provide further insights into the processes by which energy emerges through the sun's corona and pushes outward as solar wind.

Winebarger called the first mission's initial findings "unprecedented." They helped lead to the CLASP team's May award of the National Astronomical Observatory of Japan Director General Prize, citing the mission's "significant scientific results" and overall "great success."

Goals of the mission
The mission measured ultraviolet light - specifically, the Lyman-alpha emission line - produced by hydrogen atoms present in the chromosphere, a layer of the sun's atmosphere. Winebarger explained that the polarization of this light, or its restriction to one direction, can be correlated to the intensity and direction of the magnetic field.

"The CLASP observations have unlocked a new method of determining the magnetic field strength in this region - by measuring the polarization of this specific spectral line which is extremely sensitive to magnetic fields in the chromosphere," she said.

Understanding the properties of the sun's magnetic field is of crucial value to researchers. McKenzie, who is the principal investigator for CLASP 2 noted that the magnetic field plays a vital role in dictating the structure of the sun's atmosphere, and acts as a conduit for mass and energy to flow into the solar corona and solar wind. Solar material can also reach Earth from powerful eruptions on the sun, such as solar flares or coronal mass ejections, which at their worst can disrupt satellites and interfere with radio communications. As a result, knowledge of how the sun releases these bursts of energy is critical to our understanding of the sun's impact on these important technological systems.

Launched via Black Brant IX suborbital sounding rocket from White Sands Missile Range in New Mexico, CLASP had a mere five-minute window in which to study the sun, 93 million miles distant, and return imagery with minimal noise - or the disruption of image pixels - and a level of precision of less than 0.1 percent. "CLASP definitely made good on the promise of its mission," McKenzie said. It even revealed a series of unexpected supersonic events, possibly some type of previously unseen magnetohydrodynamic wave, occurring all over the sun's surface.

CLASP 2 expands on the research of the first mission, this time studying other emission lines, namely Magnesium II h and k lines. Routinely observed for chromospheric investigations, these lines operate on a longer wavelength than do the Lyman-alpha lines, McKenzie explained. "Studying those additional wavelengths will add a three-dimensional perspective to the study, revealing not just the component of the magnetic field in the plane of the sky, but also the part directed toward or away from us - the complete 3-D magnetic vector," he said. "We're picking up a whole new dimension with the new mission."

More about CLASP and CLASP 2
The CLASP project was based on pioneering theoretical research proposed in 2007 by Javier Trujillo-Bueno of the Instituto de Astrofisica de Canarias in Santa Cruz de Tenerife, Spain. The optical instrument was designed and built by a team from the National Astronomical Observatory of Japan and the Japan Aerospace Exploration Agency, and included precision optical components provided by France's Institut d'Astrophysique Spatiale. The launch was supported through NASA's Sounding Rocket Program at NASA's Wallops Flight Facility on Wallops Island, Virginia, which is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA's Heliophysics Division manages the sounding-rocket program.

The CLASP 2 team includes NASA, the National Astronomical Observatory of Japan, the Japan Aerospace Exploration Agency, Instituto de Astrofisica de Canarias, Institut d'Astrophysique Spatiale, Istituto Ricerche Solari Locarno, the Astronomical Institute of the Czech Academy of Sciences, Lockheed Martin Solar and Astrophysics Laboratory, the High Altitude Observatory, the University of Oslo and Stockholm University.

The NASA Marshall team are no strangers to solar work. They developed two previous sounding-rocket solar experiments: the High Resolution Coronal Imager, or Hi-C, which launched in 2012, and the Solar Ultraviolet Magnetograph Instrument, or SUMI, which completed its second research flight in 2012. They also continue to contribute to Hinode, the joint Japanese-American mission launched in 2006 to study the sun.

SOLAR SCIENCE
UV Spectropolarimetry Opens a New Window for Solar Physics Research
Tokyo, Japan (SPX) May 19, 2017
For the first time in the world, scientists have explored the magnetic field in the upper solar atmosphere by observing the polarization of ultraviolet light from the Sun. They accomplished this by analyzing data taken by the CLASP sounding rocket experiment during its 5-minute flight in space on September 3, 2015. The data show that the structures of the solar chromosphere and transition ... read more

Related Links
Solar Science at NASA
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Bordeaux pins hopes for ravaged vineyards on June bloom

Bordeaux pins hopes for ravaged vineyards on June bloom

Popular artificial sweetener also works as pesticide and insect birth control

Helping plants pump iron

SOLAR SCIENCE
Testing quantum field theory in a quantum simulator

Quantum reservoir for microwaves

Wafer-thin magnetic materials developed for future quantum technologies

Controlled creation of quantum emitter arrays

SOLAR SCIENCE
Lockheed Martin receives F-35 cost-reduction contract

China, Russia launch long-haul challenge to Boeing, Airbus

Cathay Pacific sacks 600 staff in major shakeup

Boeing considering further Super Hornet upgrades

SOLAR SCIENCE
China scrambles to tame bike chaos

Hong Kong police arrest 21 Uber drivers in sting

Researchers find computer code that Volkswagen used to cheat emissions tests

China's Geely boosts expansion with Proton, Lotus stakes

SOLAR SCIENCE
Chinese tech firm LeEco reverses course in US, cuts 325 jobs

Germany calls for better EU market access to China

Trump joins new-look G7 amid trade, climate discord

Moody's cuts China's rating on debt fears

SOLAR SCIENCE
Activists protest logging in Poland's ancient forest

Planting trees cannot replace cutting CO2 emissions

In Canada, parks thrive but conservationists cry foul

Myanmar's extensive forests are declining rapidly due to political and economic change

SOLAR SCIENCE
SES-14 integrates NASA ultraviolet space spectrograph

Supercomputing helps researchers understand Earth's interior

NASA's CYGNSS Satellite Constellation Begins Public Data Release

AU-EU joint space-based initiative calls for proposals

SOLAR SCIENCE
Nanotechnology Flight Test: Material Impact on the Future

Ultrafast nanophotonics: Turmoil in sluggish electrons' existence

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst

Researchers create first significant examples of optical crystallography for nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.