Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Bristol researchers revisit two-ball bounce problem
by Brooks Hays
Bristol, England (UPI) Jul 14, 2015


disclaimer: image is for illustration purposes only

As any high-schooler will attest, there is no shortage of ways to demonstrate the frustrating complexities of physics. But one problem stands out as a favorite for showcasing physics' counterintuities -- the two-ball bounce problem.

The problem is demonstrated by dropping a smaller ball and larger ball together, the smaller ball positioned directly on top of the larger ball. The result -- using a tennis ball and basketball, for example -- is a smaller ball bouncing unexpectedly high, three or four times the height from which it was dropped.

Researchers at the University of Bristol recently revisited the classic classroom demonstration and located flaws in the traditional explanation.

Textbooks explain the phenomenon as a demonstration of two basic physic premises, Newton's law of restitution and the the law of conservation of momentum. It turns out, the explanation is based on a flawed reality.

The high bounce is the product of human error, as demonstrators aren't able to drop the balls simultaneously. Inevitably, the smaller ball is dropped a brief moment later, and it is this gap that enables the high bounce.

When Bristol researchers revisited the phenomenon using the preciseness of computers and the keen eye of a high-speed camera, they found the closer the balls are together when dropped, the less impressive the bounce.

That traditional explanation assumes two separate but simultaneous collisions -- the basketball bounces of the floor, the tennis ball bounces off the rebounding basketball. But unless the two balls are dropped with a sizable gap between them, the basketball is still in contact with the ground when the tennis ball hits -- the order of collisions is actually reversed.

What researchers determined, was that the basketball acts like a trampoline. Upon impact, the basketball's compression excites an elastic wave that catapults the tennis ball back into the air. The effect is weakened as the gap between the two dropped balls narrows.

"Understanding how spherical bodies behave when they collide has important implications when modelling 'granular materials', such as sand, as these are can be treated as a collection of lots of tiny spheres," Yani Berdeni, a PhD student in Bristol's engineering department, explained in a press release.

Berdeni and his colleagues published their findings in the Proceedings of the Royal Society A.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
The quantum physics of artificial light harvesting
Vienna, Austria (SPX) Jul 14, 2015
Plants and bacteria make use of sunlight with remarkably high efficiency: nine out of ten absorbed light particles are being put to use in an ordinary bacterium. For years, it has been a pressing question of modern research whether or not effects from quantum physics are responsible for this outstanding performance of natural light harvesters. A team of European research groups, a co ... read more


TIME AND SPACE
Australia opens door to major live cattle trade with China

3D-printed 'smart cap' uses electronics to sense spoiled food

Global study of seed consumption uncovers wider risk to plant species

Clemson scientists stopping small insects from doing big damage to corn

TIME AND SPACE
Graphene-based film can be used for efficient cooling of electronics

Dutch hi-tech group ASML post small Q2 income dip

Ultrafast spectroscopy used to examine magnetoresistance systems

New insight into the fundamentals of solid state physics

TIME AND SPACE
Lockheed Martin to buy fabled helicopter maker Sikorsky

France delivers first batch of fighter jets to Egypt

Fuji Heavy Industries picked to develop new military helicopter

Dassault delivers Rafale fighters to Egypt

TIME AND SPACE
New fuel-cell materials pave the way for practical hydrogen-powered cars

In Mexico City, once beloved 'Beetle' car nearly extinct

China's Uber-style taxi app raises $2 bn

A learning method for energy optimization of the plug-in hybrid electric bus

TIME AND SPACE
New $100 bn BRICS bank opens in China to challenge US-led lenders

Gold price sinks to 5-year low

Google adding 'buy' buttons to mobile search ads

China launches service to back Xi's Silk Road plan

TIME AND SPACE
In a warming forest, fungi may be key to trees' survival

Evolutionary trees reveal patterns of microbial diversification

Kidnappers free 12 loggers in Senegal's Casamance: army

Timber and construction, a well-matched couple

TIME AND SPACE
NASA Satellite Camera Provides "EPIC" View of Earth

China-Brazil earth resources satellite put into operation

Discovery of zebra stripes in space resolves 50-year mystery

India Launches EO Constellation for UK-China Project

TIME AND SPACE
Plantations of nanorods on carpets of graphene capture the Sun's energy

A most singular nano-imaging technique

Nanoscale light-emitting device has big profile

Nanowires highly 'anelastic'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.