. GPS News .




.
EPIDEMICS
Breakthrough in the battle against malaria
by Staff Writers
Leicester UK (SPX) Dec 01, 2011

A mosquito in flight with its abdomen full of blood. This species, Anopheles stephensi, is the insect that transmits malaria in India and Pakistan. Credit: Hugh Sturrock/Wellcome Images

An international team of scientists has announced a breakthrough in the fight against malaria, paving the way for the development of new drugs to treat the deadly disease. According to the World Health Organisation malaria currently infects more then 225 million people worldwide and accounts for nearly 800,000 deaths per year.

Most deaths occur among children living in Africa where a child dies every 45 seconds of malaria and the disease accounts for approximately 20% of all childhood deaths. The disease is caused by the malaria parasite, Plasmodium, that is injected into the human host through the bite of the female Anopheles mosquito.

Now researchers have discovered new ways in which the malarial parasite survives in the bloodstream of its victims.

The advance is the result of a collaboration between medical scientists at the University of Leicester in the UK and a team from the French Institut National de la Sante et de la Recherche Medicale (Inserm) working at the Wellcome Trust Centre for Molecular Parasitology in Glasgow and the Ecole Polytechnique Federale de Lausanne (EPFL, Switzerland), now relocating to Monash University in Melbourne (Australia).

The breakthrough was made by the teams led by Professor Andrew Tobin at the University of Leicester and Professor Christian Doerig, now at Monash University, and is published in the prestigious scientific journal Nature Communications and was funded by The Wellcome Trust, the European Commission, Inserm and EPFL.

Professor Tobin, of the Department of Cell Physiology and Pharmacology, said: "I am proud to be involved in a collaboration that has made such an impact on malaria research. Our study opens new avenues for researchers to look for new drugs that treat malaria."

Professor Doerig explained "We have shown that a crucial element that is required by malaria parasites to survive in the human blood stream is a group of enzymes called protein kinases. If we stop these proteins kinases from working then we kill the malaria parasites. We are now looking for drugs that do exactly that - stop the protein kinases from working. If we find these drugs then we will have a new way of killing the malaria parasite."

Professor Tobin added: "It seems perfectly realistic to us that we can now develop novel anti-malaria drugs based on the findings that we have made - it certainly is a big moment in our fight against this terrible disease that mainly affects the world's poorest people."

Tobin and Doerig also warn: "The parasite is very clever at adapting to drug treatments and in so doing becoming resistant to drugs. In fact, there is already evidence that the parasite is developing resistance to the most recent front line treatment for malaria.

"To avoid the catastrophic affects of widespread resistance to anti-malarial treatments we need a continued pipeline of new anti-malaria drugs. Our discovery provides one avenue towards populating such a pipeline."

Details of the paper: The full listing of authors and their affiliations for this paper is as follows: Lev Solyakov1,*, Jean Halbert2,3,*, Mahmood M. Alam1,*, Jean-Philippe Semblat2,3, Dominique Dorin-Semblat2,3, Luc Reininger2,3, Andrew R. Bottrill4, Sharad Mistry4, Abdirhaman Abdi2,3, Clare Fennell3, Zoe Holland3, Claudia Demarta2, Yvan Bouza2, Audrey Sicard2,3, Marie-Paule Nivez3, Sylvain Eschenlauer3, Tenzing Lama2, Divya Catherine Thomas5, Pushkar Sharma5, Shruti Agarwal6, Selina Kern6, Gabriele Pradel6, Michele Graciotti1, Andrew B. Tobin1 and Christian Doerig2,3,7

Related Links
University of Leicester
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EPIDEMICS
In mice, a step towards a vaccine for HIV
Paris (AFP) Nov 30, 2011
Tests on lab mice have opened up a new path towards a vaccine against HIV, one of the most frustrating quests in the 30-year history of AIDS, scientists reported on Wednesday. Genetically modified mice fought back the human immunodeficiency virus (HIV) after they had been injected with genes to make antibodies, the first line of defence in the immune system, the report said in the journal Na ... read more


EPIDEMICS
Herbicide spurs reproductive problems in many animals

Australian science joins global effort to transform food system

Herbicide may affect plants thought to be resistant

Study of flower petals shows evolution at the cellular level

EPIDEMICS
The interplay of dancing electrons

Toshiba to shut three Japan semiconductor plants

In new quantum-dot LED design, researchers turn troublesome molecules to their advantage

Researchers watch a next-gen memory bit switch in real time

EPIDEMICS
Air France suspends maintenance in China

US 'concerned' about EU airline carbon rules

German airline seeks Chinese, Gulf investors: report

Brazil a serious rival in air transport

EPIDEMICS
US car sales accelerate in November

At a crossroads who runs the red light

Cars go green and online as Tokyo Motor Show opens

Volvo to boost staff, mainly in China: CEO

EPIDEMICS
Protests force Peru to suspend gold mine

Violent protests halt $4.8 bn Peru mining project

Argentina eyes expanding steel market

Chinese developers plan online auctions: report

EPIDEMICS
Walnut trees may not be able to withstand climate change

World deforestation rate accelerating: UN

World deforestation rate accelerating: UN

UN mobilizes civil society for Rio's environment summit

EPIDEMICS
China launches remote-sensing satellite Yaogan XIII

Texas Drought Visible in New National Groundwater Maps

APL Proposes First Global Orbital Observation Program

Government investment brings low cost radar satellites to market

EPIDEMICS
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement