. GPS News .




.
FLORA AND FAUNA
Body rebuilding: Researchers regenerate muscle in mice
by Staff Writers
Worcester, MA (SPX) Dec 14, 2011

Raymond Page is an assistant professor of biomedical engineering at Worcester Polytechnic Institute and chief scientific officer at CellThera. Credit: Worcester Polytechnic Institute.

A team of scientists from Worcester Polytechnic Institute (WPI) and CellThera, a private company located in WPI's Life Sciences and Bioengineering Center, have regenerated functional muscle tissue in mice, opening the door for a new clinical therapy to treat people who suffer major muscle trauma.

The team used a novel protocol to coax mature human muscle cells into a stem cell-like state and grew those reprogrammed cells on biopolymer microthreads. The threads were placed in a wound created by surgically removing a large section of leg muscle from a mouse.

Over time, the threads and cells restored near-normal function to the muscle, as reported in the paper "Restoration of Skeletal Muscle Defects with Adult Human Cells Delivered on Fibrin Microthreads," published in the current issue of the journal Tissue Engineering.

Surprisingly, the microthreads, which were used simply as a scaffold to support the reprogrammed human cells, actually seemed to accelerate the regeneration process by recruiting progenitor mouse muscle cells, suggesting that they alone could become a therapeutic tool for treating major muscle trauma.

"We are pleased with the progress of this work, and frankly we were surprised by the level of muscle regeneration that was achieved," said Raymond Page, assistant professor of biomedical engineering at WPI, chief scientific officer at CellThera, and corresponding author on the paper.

The current study is part of a multi-year program funded, in part, by grants from the National Institutes of Health and DARPA, the advanced research program of the U.S Department of Defense, to support the development of new technologies and therapies for people who suffer serious wounds and limb loss.

Mammalian skeletal muscles are able to repair small injuries caused by excessive exertion or minor trauma by recruiting muscle progenitor cells, which have not fully developed into muscle fibers, to the site of injury to rebuild the muscle. With major injuries, however, the body's first priority is to stop the bleeding, so scar tissue forms quickly at the wound site and overrides any muscle repair.

In the current study, the WPI/CellThera team combined two novel technologies to try to prevent scar formation and prompt muscle re-growth. The first was a method they had developed previously for reprogramming mature human skin cells without employing viruses or extra genes (Cloning, Stem Cells. 2009 Jul 21). The reprogrammed cells express stem cell genes and multiply in great numbers, but don't differentiate into specific tissues.

The second was the use of biopolymer microthreads as a scaffold to support the cells. Developed by George Pins, associate professor of biomedical engineering at WPI, the threads--about the thickness of a human hair--are made of fibrin, a protein that helps blood clot.

Researchers removed a portion of the tibialis anterior leg muscle in several mice (the muscle was chosen because injury to it affects the foot's range of motion but doesn't prevent the mice from walking). In some mice, the injuries were left to heal on their own. In others, the wound was filled with bundles of microthreads seeded with reprogrammed human muscle cells.

The untreated mice developed significant scarring at the injury site, with no restoration of muscle function. In sharp contrast, the mice that received the reprogrammed cells grew new muscle fibers and developed very little scarring.

Tests done 10 weeks after implantation showed that the regenerated tibialis anterior muscle functioned with nearly as much strength as an uninjured muscle. The scientists expected that most of the regenerated muscle would be composed of human cells, since the implanted cells were from human muscle.

Surprisingly, most of the new muscle fibers were made of mouse cells. The team theorized that the fibrin microthreads, which in their composition and shape are similar to muscle fibers, may encourage resident mouse progenitor cells to migrate into the wound and begin restoring the tissue (they may also forestall the natural inflammatory response that leads to scarring after a major injury).

This surprise finding suggests that fibrin microthreads alone could be used to treat major muscle trauma while research on enhancing regeneration with reprogrammed human cells continues. "The contribution of the fibrin microthreads alone to wound healing should not be understated," the authors wrote.

"While this clearly points to room for improving cell delivery techniques, it suggests that fibrin microthreads alone have tremendous potential for reducing fibrosis and remodeling large muscle injuries. Future studies will address, more completely, the capability of microthreads alone and determine, at what point, a combinational cell therapy is required for full functional tissue restoration."

Related Links
Worcester Polytechnic Institute
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Law enforcement vital for great ape survival
Leipzig, Germany (SPX) Dec 13, 2011
Recent studies show that the populations of African great apes are rapidly decreasing. Many areas where apes occur are scarcely managed and weakly protected. Researchers from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have carried out an international collaborative project together with field researchers and park managers. The project aim was to evaluate ho ... read more


FLORA AND FAUNA
Salt-tolerant crops show higher capacity for carbon fixation

Spring's rising soil temperatures see hormones wake seeds from their winter slumber

Blue light irradiation promotes growth, increases antioxidants in lettuce seedlings

Earliest Known Bug-Repellant Plant Bedding Found at South African Rock Shelter

FLORA AND FAUNA
Intel alliance will let chips chat at close range

Invisible computing comes to Asia tech expo

Multi-purpose photonic chip paves the way to programmable quantum processors

The smallest conceivable switch

FLORA AND FAUNA
Cathay announces economy class upgrade

Airbus eyes Japan's budget carriers

AirAsia boss bullish on growth, eyes China, India

American Airlines slams 'rude' actor in plane row

FLORA AND FAUNA
US panel seeks ban on all phone use while driving

US safety body urges cellphone ban while driving

CAFE standards create profit incentive for larger vehicles

US lawmakers press GM on electric Volt's safety

FLORA AND FAUNA
China announces new tariffs on some US auto imports

Taiwan international visitors at record high

Danone, Nestle suspend or close factories in China

US online spending rises 15% nearing year's end: data

FLORA AND FAUNA
Climate change blamed for dead trees in Africa

Ecologists fume as Brazil Senate OKs forestry reform

Brazil cracks down on illegal logging in Amazon

Palm planters blamed for Borneo monkey's decline

FLORA AND FAUNA
Astrium awarded Sentinel 5 Precursor contract

ESA selects Astrium to build Sentinel-5 Precursor satellite

Jason-1 Achieves a One-Decade Landmark

Landsat satellites Track Yellowstone Underground Heat

FLORA AND FAUNA
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement