GPS News  
TIME AND SPACE
Black holes really just ever-growing balls of string, researchers say
by Staff Writers
Columbus OH (SPX) Jul 30, 2018

file illustration

Black holes aren't surrounded by a burning ring of fire after all, suggests new research.

Some physicists have believed in a "firewall" around the perimeter of a black hole that would incinerate anything sucked into its powerful gravitational pull.

But a team from The Ohio State University has calculated an explanation of what would happen if an electron fell into a typical black hole, with a mass as big as the sun.

"The probability of the electron hitting a photon from the radiation and burning up is negligible, dropping even further if one considers larger black holes known to exist in space," said Samir Mathur, a professor of physics at Ohio State. The study appears in the Journal of High Energy Physics.

The new study builds on previous work from 2004 led by Mathur that theorized that black holes are basically like giant, messy balls of yarn - "fuzzballs" that gather more and more heft as new objects are sucked in. That theory, Mathur said, resolved the famous black hole "information paradox" outlined by Steven Hawking in 1975. Hawking's research had concluded that particles entering a black hole can never leave. But that ran counter to the laws of quantum mechanics, creating the paradox.

The firewall argument emerged in 2012, when four physicists from the University of California, Santa Barbara argued that any object like a fuzzball would have to be surrounded by a ring of fire that will burn any object before it could reach the fuzzball's surface.

"What we've shown in this new study is a flaw in the firewall argument," Mathur said.

Black holes are places in space with such immense gravitational pull that not even light can escape once it's captured. Their powerful pull condenses any matter black holes draw in. They are invisible, but scientists have established that black holes can range from tiny to huge, estimations that are based on the behavior of stars and gas surrounding the black hole.

After months of mathematical machinations, Mathur and his team arrived at their by-the-numbers explanation to support their theory discounting the firewall. It's built on string theory, the scientific notion that the universe is composed of subatomic string-like tubes of energy. The belief is rooted in the marriage of quantum mechanics (which concerns itself with the mathematics of subatomic particles) and Albert Einstein's theory of relativity.

Mathur has always counted himself among those scientists who are firewall skeptics.

"The question is 'Where does the black hole grab you?' We think that as a person approaches the horizon, the fuzzball surface grows to meet it before it has a chance to reach the hottest part of the radiation, and this is a crucial finding in this new physics paper that invalidates the firewall argument," he said.

"Once a person falling into the black hole is tangled up in strings, there's no easy way to decide what he will feel.

"The firewall argument had seemed like a quick way to prove that something falling through the horizon burns up. But we now see that there cannot be any such quick argument; what happens can only be decided by detailed calculations in string theory," Mathur said.

Research paper


Related Links
Ohio State University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
NASA's Fermi Traces Source of Cosmic Neutrino to Monster Black Hole
Greenbelt MD (SPX) Jul 13, 2018
For the first time ever, scientists using NASA's Fermi Gamma-ray Space Telescope have found the source of a high-energy neutrino from outside our galaxy. This neutrino traveled 3.7 billion years at almost the speed of light before being detected on Earth. This is farther than any other neutrino whose origin scientists can identify. High-energy neutrinos are hard-to-catch particles that scientists think are created by the most powerful events in the cosmos, such as galaxy mergers and material falli ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Wildfires, drought hit Sweden's Sami reindeer herders

Murkowksi: Tariffs hurt more than just agriculture

China's persistent food and drug safety problem

EU court extends GMO rules to new techniques

TIME AND SPACE
Writing the future of rewritable memory

Research Teams Selected to Lower Barriers to Modern System-on-Chip Design Announced

Generation of random numbers by measuring phase fluctuations from a laser diode

Qualcomm ends tie-up with Dutch-based NXP amid US-China friction

TIME AND SPACE
Two pilots killed in Vietnam military plane crash

Airbus profits halved but hopes to meet delivery target

Alsalam awarded $59.7M contract for Saudi F-15 upgrades

Iraqi Airways suspends pilots who fought in-flight over food

TIME AND SPACE
Uber resumes testing for autonomous cars in 'manual mode'

GM launches peer-to-peer car sharing service on rental platform

EU carmakers 'inflating' emissions to skew carbon targets

EU says VW repairs most cars with cheating devices

TIME AND SPACE
BRICS emerging economies meet as US trade war looms

Trump set for tense trade talks with EU's Juncker

China's Xi says 'no winner' in any trade war

IMF warns excess trade surpluses aggravate tensions

TIME AND SPACE
Behold the Amazonian eco-warrior drag queen

Tropical forests could soon accelerate, not slow, global warming

Treetop species threatened by rising temperatures among forest canopies

In Mozambique, a joint fight against climate change and forest loss

TIME AND SPACE
Preparing to fly the wind mission Aeolus

Satellite maps reveal spread of mountaintop coal mining in Appalachia

Red Sea flushes faster from far flung volcanoes

NASA Debuts Online Toolkit to Promote Commercial Use of Satellite Data

TIME AND SPACE
A new 'periodic table' for nanomaterials

Physicists uncover why nanomaterial loses superconductivity

Squeezing light at the nanoscale

A new way to measure energy in microscopic machines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.