GPS News  
SPACE MEDICINE
Biologists give bacteria thermostat controls
by Staff Writers
Pasadena CA (SPX) Nov 16, 2016


Artwork depicts genetically engineered bacteria designed with "thermostat controls." Thermally controlled bacteria such as these could ultimately help treat diseases of the gut, or cancer. Image courtesy Caltech. For a larger version of this image please go here.

A new helper in the fight against cancer and other diseases of the gut may be genetically altered bacteria that release medicines to tumors or the gut. Now, a new study performed using mice demonstrates how doctors might one day better regulate those therapeutic microbes by engineering them to respond to temperature. For instance, if engineered bacteria were administered to a patient with a disease, doctors could, in theory, instruct the bacteria to release medicine to just the site of interest, and nowhere else in the body, by using ultrasound to gently heat up the tissue.

"Bacteria can be designed to act like special agents fighting disease in our bodies," says Caltech's Mikhail Shapiro, assistant professor of chemical engineering and Heritage Principal Investigator, whose overall research goal is to create new ways to both visualize and control cells--bacterial cells and human cells--for medicinal purposes. "We're building walkie-talkies for the cells so we can both listen and talk to them."

Shapiro is principal investigator on a paper about the new research published November 14 in the journal Nature Chemical Biology. The colead authors are Dan Piraner and Mohamad Abedi, graduate students in Shapiro's lab.

The research also shows how these engineered bacteria, once in a patient, could be programmed to stop administering a therapeutic or to self-destruct if the patient's temperature rises from a fever. A fever might signal that the therapy is not working, and thus it would be in the patient's best interest for the bacteria to terminate its activity.

In another application of the technology, the researchers demonstrated how the bacteria could be designed to destroy themselves once they leave a patient's body through defecation. The lower temperature outside of a host's body would signal the engineered bacteria to activate a genetic kill switch, thereby alleviating concerns about the genetically altered microbes spreading to the environment.

"We can use these thermal switches in bacteria to control a variety of behaviors," says Shapiro.

The strategy of using engineered bacteria to fight disease--part of a growing field called microbial therapeutics--has shown some promise in animal models and humans. Previous research has demonstrated that some bacteria naturally make their way to tumor sites because they prefer the tumors' low-oxygen environments. Studies have shown that these bacteria can be directed to release a medicine onto tumors, such as the tumor-destroying drug hemolysin. Other studies have shown that bacteria administered to the gut can release molecules to reduce inflammation. But these bacteria might end up in other portions of the body, and not just at the sites of interest.

The method developed by Shapiro's lab solves this problem by providing a mechanism through which bacteria can be instructed to direct drugs only to a specific anatomical site. The idea is that the genetically engineered bacteria would activate their therapeutic program at a certain temperature induced via ultrasound tools, which gently heat tissues with millimeter precision. A doctor could, in theory, administer genetically altered bacteria to a cancer patient and then, by focusing ultrasound at the tumor site, trigger the bacteria to fight the tumor.

"We can spatially and temporally control the activity of the bacteria," says Abedi. "We can communicate with them and tell them when and where something needs to be done."

To create thermally controllable bacteria, the team first needed to find candidate genetic switches whose activity depends on temperature changes. They ultimately identified two candidates. The first is a protein in Salmonella bacteria, and the second originates from a bacterial virus called a bacteriophage. Both proteins bind to DNA to turn a genetic circuit on or off in response to temperature.

Next, the scientists used a protein engineering technique--"directed evolution," pioneered by Caltech's Frances Arnold--to evolve the proteins in the lab and tune their switching temperatures. For instance, the Salmonella protein was originally activated by temperatures ranging between 42 and 44 degrees Celsius. Using directed evolution, the scientists generated versions with activation temperatures between 36 and 39 degrees Celsius. When these genetic switches are used to control the expression of therapeutic proteins, they can act like thermal controls to turn the therapy on or off at a given temperature.

"When we were thinking about how to get bacteria to sense temperature, we looked at nature and found a few systems where bacteria can do this," says Piraner. "We tested the performance, found the ones that had the best switching performance. From there, we went on to find that they could be tuned and amplified. It all started with what nature gave us, and engineering took us the rest of the way."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
California Institute of Technology
Space Medicine Technology and Systems






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
Analog series-based scaffolds: a new definition that may aid medicinal chemistry
Washington DC (SPX) Nov 09, 2016
While the Bemis-Murcko approach to scaffold analysis has remained the go-to definition for computational medicinal chemistry for the past few decades, it is not without its shortcomings. New research published in Future Science OA from Jurgen Bajorath and colleagues at the University of Bonn (Germany) has presented a new scaffold definition, termed analog series-based scaffolds (ASB), and ... read more


SPACE MEDICINE
Light therapy could cure pesticide-poisoned bees

Early evidence of dairying discovered

Study finds limited sign of soil adaptation to climate warming

Agriculture victim of and solution to climate change

SPACE MEDICINE
Engineers develop invisibility cloak for high-tech processing chips

Computers made of genetic material

New technique for creating NV-doped nanodiamonds may be boost for quantum computing

Scientists develop a semiconductor nanocomposite material that moves in response to light

SPACE MEDICINE
French court green-lights controversial Nantes airport

Leonardo-Finmeccanica demonstrates C-27J capabilities

First woman to fly China's J-10 fighter killed in crash

Thales announces major investment in next generation aircraft communications technology

SPACE MEDICINE
VW reaches 3.0-liter diesel agreement with EPA: report

Samsung to buy US auto parts supplier Harman for $8 bn

China auto sales growth falls back in October: group

VW's Audi hit with fresh emissions cheating lawsuit

SPACE MEDICINE
China weakens yuan to eight-year low

Taiwan to punish fraudsters abroad after China deportations

China says retail sales growth slows in October

Sarkozy wants tax on US products if Trump scraps Paris pact

SPACE MEDICINE
Global boreal forests differ but not immune to climate change

Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

SPACE MEDICINE
A Box of 'Black Magic' to Study Earth from Space

Successful calculation of human and natural influence on cloud formation

Extreme weather warnings at UN climate meeting

Don't see ISRO's Bhuvan as competition: Google India

SPACE MEDICINE
Researchers use acoustic waves to move fluids at the nanoscale

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane

Shedding light on the formation of nanodroplets in aqueous

'Pressure-welding' nanotubes creates ultrastrong material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.