Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Biodegradable, flexible silicon transistors
by Staff Writers
Washington DC (SPX) Jul 01, 2015


An array of microwave silicon transistors sitting on a wood-derived CNF substrate. Image courtesy Jung-Hun Seo, Shaoqin Gong and Zhenqiang Ma/University of Wisconsin-Madison. For a larger version of this image please go here.

Portable electronics users tend to upgrade their devices frequently as new technologies offering more functionality and more convenience become available. A report published by the U.S. Environmental Protection Agency in 2012 showed that about 152 million mobile devices are discarded every year, of which only 10 percent is recycled - a legacy of waste that consumes a tremendous amount of natural resources and produces a lot of trash made from expensive and non-biodegradable materials like highly purified silicon.

Now researchers from the University of Wisconsin-Madison have come up with a new solution to alleviate the environmental burden of discarded electronics. They have demonstrated the feasibility of making microwave biodegradable thin-film transistors from a transparent, flexible biodegradable substrate made from inexpensive wood, called cellulose nanofibrillated fiber (CNF). This work opens the door for green, low-cost, portable electronic devices in future.

In a paper published this week in the Applied Physics Letters from AIP Publishing, the researchers describe the biodegradable device.

"We found that cellulose nanofibrillated fiber based transistors exhibit superior performance as that of conventional silicon-based transistors," said Zhenqiang Ma, the team leader and a professor of electrical and computer engineering at the UW-Madison. "And the bio-based transistors are so safe that you can put them in the forest, and fungus will quickly degrade them. They become as safe as fertilizer."

Nowadays, the majority of portable electronics are built on non-renewable, non-biodegradable materials such as silicon wafers, which are highly purified, expensive and rigid substrates, but cellulose nanofibrillated fiber films have the potential to replace silicon wafers as electronic substrates in environmental friendly, low-cost, portable gadgets or devices of the future.

Cellulose nanofibrillated fiber is a sustainable, strong, transparent nanomaterial made from wood. Compared to other polymers like plastics, the wood nanomaterial is biocompatible and has relatively low thermal expansion coefficient, which means the material won't change shape as the temperature changes. All these superior properties make cellulose nanofibril an outstanding candidate for making portable green electronics.

To create high-performance devices, Ma's team employed silicon nanomembranes as the active material in the transistor - pieces of ultra-thin films (thinner than a human hair) peeled from the bulk crystal and then transferred and glued onto the cellulose nanofibrill substrate to create a flexible, biodegradable and transparent silicon transistor.

But to make portable electronics, the biodegradable transistor needed to be able to operate at microwave frequencies, which is the working range of most wireless devices.

The researchers thus conducted a series of experiments such as measuring the current-voltage characteristics to study the device's functional performance, which finally showed the biodegradable transistor has superior microwave-frequency operation capabilities comparable to existing semiconductor transistors.

"Biodegradable electronics provide a new solution for environmental problems brought by consumers' pursuit of quickly upgraded portable devices," said Ma. "It can be anticipated that future electronic chips and portable devices will be much greener and cheaper than that of today."

Next, Ma and colleagues plan to develop more complicated circuit system based on the biodegradable transistors.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
With 300 kilometers per second to new electronics
Dresden, Germany (SPX) Jun 28, 2015
It may be significantly easier to design electronic components in future. Scientists at the Max Planck Institute for Chemical Physics of Solids have discovered that the electrical resistance of a compound of niobium and phosphorus increases enormously when the material is exposed to a magnetic field. This giant magnetoresistance, which is responsible for the large storage capacity of modern hard ... read more


CHIP TECH
Rising fossil fuel energy costs spell trouble for global food security

French pride fizzes as UNESCO lists Champagne and Burgundy vineyards

Use more forages in livestock farming

A tale of 2 (soil) cities

CHIP TECH
Biodegradable, flexible silicon transistors

Silver may hold key to electronics advances

With 300 kilometers per second to new electronics

Biomanufacturing of CdS quantum dots

CHIP TECH
Two dead as F-16, Cessna collide in South Carolina

Solar Impulse 2 pilot becomes aviation legend

Airbus and Mahindra to make military choppers in India

US military on defensive over F-35 fighter jet

CHIP TECH
A learning method for energy optimization of the plug-in hybrid electric bus

Physical study may give boost to hydrogen cars

Researchers build mini Jeep that turns tire friction into energy

Digital messages on vehicle windshields make driving less safe

CHIP TECH
Beijing names preferred chief for China-led bank

Steel firms warn of massive Mexico layoffs

France woos Chinese investors as PM wraps up fruitful trip

China and France say tie-up in emerging economies 'win-win'

CHIP TECH
Rumors of southern pine deaths have been exaggerated

Timber and construction, a well-matched couple

Can pollution help trees fight infection?

In Beirut, a green paradise off-limits to Lebanese

CHIP TECH
Estimating Earth's last pole reversal using radiometric dating

Oregon experiments open window on landscape formation

Sentinel-2A completes critical first days in space

Beijing Quadrupled in Size in a Decade

CHIP TECH
New nanogenerator harvests power from rolling tires

Soft core, hard shell -- the latest in nanotechnology

Ultrafast heat conduction can manipulate nanoscale magnets

MIPT physicists develop ultrasensitive nanomechanical biosensor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.