GPS News
STELLAR CHEMISTRY
Beyond the Dragon Arc a treasure trove of unseen stars
Abell 370, a galaxy cluster located nearly 4 billion light-years away from Earth features several arcs of light, including the "Dragon Arc" (lower left of center). These arcs are caused by gravitational lensing: Light from distant galaxies far behind the massive galaxy cluster coming toward Earth is bent around Abell 370 by its massive gravity, resulting in contorted images.
Beyond the Dragon Arc a treasure trove of unseen stars
by Clarence Oxford
Los Angeles CA (SPX) Jan 07, 2025

Astronomers have captured images of over 40 individual stars in a galaxy so distant that its light has traveled for nearly 6.5 billion years to reach Earth, dating back to when the universe was only half its current age. This achievement was made possible through the combined power of NASA's James Webb Space Telescope (JWST) and a cosmic phenomenon known as gravitational lensing.

The galaxy, referred to as the Dragon Arc, is positioned behind a massive galaxy cluster called Abell 370. The immense gravitational field of Abell 370 warps and magnifies the light from the Dragon Arc, stretching its spiral shape into an elongated arc and allowing astronomers to resolve individual stars within the distant galaxy.

"To us, galaxies that are very far away usually look like a diffuse, fuzzy blob," explained lead author Yoshinobu Fudamoto, an assistant professor at Chiba University in Japan and visiting scholar at the University of Arizona's Steward Observatory. "But actually, those blobs consist of many, many individual stars. We just can't resolve them with our telescopes."

Gravitational lensing, predicted by Albert Einstein, occurs when a massive object's gravity bends the light from objects behind it, effectively magnifying them. This natural telescope has enabled the detection of individual stars in distant galaxies, a feat previously unattainable.

"These findings have typically been limited to just one or two stars per galaxy," Fudamoto noted. "To study stellar populations in a statistically meaningful way, we need many more observations of individual stars."

The discovery was serendipitous. Fengwu Sun, a former University of Arizona graduate student and now a postdoctoral scholar at the Center for Astrophysics | Harvard and Smithsonian, was examining JWST images of the Dragon Arc when he identified 44 individual stars whose brightness varied over time due to changes in the gravitational lensing effect.

"This groundbreaking discovery demonstrates, for the first time, that studying large numbers of individual stars in a distant galaxy is possible," Sun said.

The study, published in the journal Nature Astronomy, not only sets a record for the number of individual stars detected in the distant universe but also opens new avenues for investigating dark matter, one of the universe's greatest mysteries.

"Inside the galaxy cluster, there are many stars floating around that are not bound by any galaxy," said co-author Eiichi Egami, a research professor at Steward Observatory. "When one of them happens to pass in front of the background star in the distant galaxy along the line of sight with Earth, it acts as a microlens, in addition to the macrolensing effect of the galaxy cluster as a whole."

This combination of macrolensing by the galaxy cluster and microlensing by individual stars has provided an unprecedented glimpse into the stellar populations of a galaxy billions of light-years away, offering insights into the formation and evolution of galaxies across cosmic time.

Related Links
University of Arizona
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Physicists propose new insights into dark matter through stellar streams
Los Angeles CA (SPX) Jan 07, 2025
Researchers have identified a potential explanation for the unusual features of the GD-1 stellar stream, one of the most thoroughly studied stellar streams in the Milky Way's galactic halo. This thin, elongated stream exhibits distinctive spur and gap characteristics that have puzzled scientists. A team led by Professor Hai-Bo Yu from the University of California, Riverside, suggests these features may result from a core-collapsing self-interacting dark matter (SIDM) subhalo, a dense satellite halo with ... read more

STELLAR CHEMISTRY
Crop switching boosts climate resilience in Chinese agriculture

WTO favours EU over Indonesia on palm oil restrictions

Climate fee on food could cut greenhouse gas emissions in agriculture and support social equity

Rubber tappers forge sustainable future in Amazon

STELLAR CHEMISTRY
US announces new restrictions on AI chip exports

Quantum computing advances with silicon-based donor spin qubits

Taiwan chip giant TSMC says 2024 revenue rose 33.9%

AI comes down from the cloud as chips get smarter

STELLAR CHEMISTRY
South Korea begins lifting Jeju Air wreckage after fatal crash

Black box of Azerbaijan crashed plane sent to Brazil for investigation: authorities

Several airlines cancel flights to Russia after Azerbaijan Airlines crash

Airbus US Space and Defense partners with Aerostar to advance stratospheric ISR technologies

STELLAR CHEMISTRY
Vortex vehicle computer enhances AI and SATCOM capabilities

Driving autonomous vehicles to a more efficient future

Global electric car sales rose by 25% in 2024

China's electric and hybrid vehicle sales jump 40.7% in 2024

STELLAR CHEMISTRY
UK finance minister begins China visit amid govt bond crisis

UK treasurer says London 'natural home' for Chinese finance

Floods, drought push Brazil inflation over target in 2024

Stock markets drift lower as US jobs data looms

STELLAR CHEMISTRY
Don't write off logged tropical forests - oil palm conversion impacts ecosystems widely

In Brazil, an Amazon reforestation project seeks to redeem carbon markets

Eyeing green legacy, Biden declares new US national monuments

Guadeloupe to fell iconic coconut palms

STELLAR CHEMISTRY
Earth's air war explaining delayed rise of plants and animals on land

NASA grant awarded to enhance AI-driven satellite weather forecasting

New dataset illuminates Earth's atmosphere from ground level to space

SIIS Signs MOU with Pixxel to Expand Hyperspectral Data Solutions in Korea

STELLAR CHEMISTRY
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.