. GPS News .




.
BLUE SKY
Bacteria forge nitrogen from nitric oxide
by Staff Writers
Munich, Germany (SPX) Oct 18, 2011

An anammox culture in a membrane bioreactor. The red colour is due to the heme c group of the protein cytochrome c that plays an important role in the anammox metabolism. Photo courtesy B. Kartal.

The anaerobic oxidation of ammonia (anammox) is an important pathway in the nitrogen cycle that was only discovered in the 1980s. Currently, scientists estimate that about 50 percent of the nitrogen in the atmosphere is forged by this process.

A group of specialized bacteria perform the anammox reaction, but so far scientists have been in the dark about how these bacteria could convert ammonia to nitrogen in the complete absence of oxygen. Now, 25 years after its discovery, they finally solved the molecular mechanism of anammox.

Anammox bacteria are very unusual because they contain an organelle which is a typical eukaryotic feature. Inside this organelle, known as the "anammoxosome", the bacteria perform the anammox reaction. The membrane of the anammoxosome presumably protects the cells from highly reactive intermediates of the anammox reaction.

These intermediates could be hydrazine and hydroxylamine, as microbiologists proposed many years ago. This was very exciting news because the turnover of hydrazine, a very powerful reductant also used as rocket fuel, had never been shown in biology. However, these early experiments were provisional and many open questions remained.

To finally unravel the pathway experimentally was a very difficult enterprise. Marc Strous from the Max Planck Institute in Bremen says: "The anammox organisms are difficult to cultivate because they divide only once every two weeks.

Therefore we had to develop cultivation approaches suitable for such low growth rates. Even after 20 years of trials, we can still only grow the organisms in bioreactors and not in pure culture."

In the present study, the researchers make use of the latest innovation in bioreactor technology for anammox cultivation: the membrane bioreactor. In such bioreactors the anammox organisms grow as suspended cells rather than in biofilms on surfaces, and relatively few contaminating organisms are present.

The study makes use of protein purification and proteins cannot be effectively purified from biofilms because of the large amount of slime associated with these biofilms.

Another important key to the metabolism was the availability of the genome sequence of one of the best known anammox bacteria, Kuenenia stuttgartiensis.

With the knowledge of the genome, the authors knew which proteins could be important. Based on the genome sequence, they could predict that nitric oxide, not hydroxylamine, might be the precursor for hydrazine.

With a set of state-of-the art molecular methods the scientists could thus completely unravel the anammox pathway, and unequivocally establish the role of hydrazine and nitric oxide (NO) as intermediates.

"With this significant advance we can finally understand how the nitrogen in the air we breathe is created: from rocket fuel and nitric oxide!" concludes Marc Strous. With the establishment of the prominent role of nitric oxide in both anammox and denitrification, the research also opens a new window on the evolution of the biological nitrogen cycle in the Earth's distant past.

Marc Strous explains: "In the early days in Earth's history, the nitric oxide accumulated in the atmosphere by vulcanic activity, was presumably the first "deep electron sink" on earth and may so have enabled the evolution of both microbial metabolic pathways anammox and denitrification."

Related Links
-
The Air We Breathe at TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



BLUE SKY
From myth to reality: Photos prove triple rainbows exist
Washington DC (SPX) Oct 11, 2011
Few people have ever claimed to see three rainbows arcing through the sky at once. In fact, scientific reports of these phenomena, called tertiary rainbows, were so rare - only five in 250 years - that until now many scientists believed sightings were as fanciful as Leprechaun's gold at a rainbow's end. These legendary optical rarities, caused by three reflections of each light ray within ... read more


BLUE SKY
Farmland floods do not raise levels of potentially harmful flame retardants in milk

Food without preservatives - thanks to self-cleaning equipment

Southern Africian farmers using fertilizer trees to improve food security

S Africa to release report on Iraq's oil-for-food

BLUE SKY
A new scheme for photonic quantum computing

Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

New knowledge about 'flawed' diamonds could speed the development of diamond-based quantum computers

Researchers Realize High-Power, Narrowband Terahertz Source at Room Temperature

BLUE SKY
Aircraft leasing growing in Latin America

China's aviation sector sees slower growth: report

Northrop Grumman Extends Airport Realtime Collaboration Capability

Boeing Forecasts 1,250 New Airplanes Needed in Northeast Asia

BLUE SKY
Hybrid trucks, buses focus of new Purdue center

Laboratory on Wheels

China auto sales up 5.5% in September

Kicking hybrids out of carpool lanes backfires, slowing traffic for all

BLUE SKY
Computer chip giant Intel reports record earnings

Europe warms up to Mercosur, but has terms

Moody's lowers Sony rating outlook

Key US House panel to review trade ties with China

BLUE SKY
Bolivia president offers talks with protest marchers

Bolivian natives reach La Paz after marathon march

Bolivian native protest march nears La Paz

Pulp mill row raised fears of war: report

BLUE SKY
NASA Readies New Type of Earth-Observing Satellite for Launch

NASA, Japan Release Improved Topographic Map of Earth

NASA postpones climate satellite launch to Oct 28

NASA Readies New Type of Earth-Observing Satellite for Launch

BLUE SKY
Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure

Molecular Depth Profiling Modeled Using Buckyballs and Low-Energy Argon

New form of superhard carbon observed

Pear-shaped 110-carat diamond to go under hammer


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement