GPS News  
STELLAR CHEMISTRY
Astrophysicists prove neutrinos originate from Blazars
by Staff Writers
Clemson SC (SPX) Jul 17, 2022

An artist's illustration of neutrinos originating from a high-energy Blazar.

Cosmic rays, charged particles that travel up to nearly the speed of light from deep outer space, constantly bombard Earth.

For more than a century, astrophysicists have tried to determine the origin of those extremely energetic particles, which are up to a million times more energetic than anything achieved by the world's most powerful particle accelerator, the Large Hadron Collider near Geneva, Switzerland. They also want to know what propels them with such tremendous force.

Solving the age-old mystery could be one step closer thanks to new multi-messenger research by a team of scientists that includes Clemson University Associate Professor of Physics and Astronomy Marco Ajello.

Ajello and collaborators Sara Buson from Julius-Maximilians-Universitat (JMU) Wurzburg in Bavaria, Germany, and Andrea Tramacere from the University of Geneva have proven with an unprecedented certainty that astrophysical neutrinos originate from blazars.

Astrophysical neutrinos are tiny neutral particles produced by cosmic ray interactions in these extreme accelerators, making them unique messengers, or signals, that could help pinpoint cosmic ray sources.

Because cosmic rays are charged particles, the galaxy's magnetic fields can deflect them during their journey through space. That makes it impossible for scientists to trace where they originated. Neutrinos, on the other hand, have very little mass, are neutral and hardly interact with matter. They race through the universe and can travel through galaxies, planets and the human body almost without a trace. Because electromagnetic forces do not affect them, they can be traced back to their astrophysical sources.

In 2017, the IceCube Neutrino Observatory, buried deep in the ice at the South Pole, detected a neutrino. Scientists traced it back to blazar TXS 0506+056. Blazars are active galactic nuclei powered by supermassive black holes that emit much more radiation than their entire galaxy. The publication in the journal Science sparked a scientific debate about whether blazars are cosmic ray accelerators.

Using neutrino data obtained by IceCube - the most sensitive neutrino detector currently in operation - and a catalog of astrophysical objects confidently identified as blazars, Ajello and his colleagues found powerful evidence that a subset of blazars originated the observed high-energy neutrinos. Their findings, published in The Astrophysical Journal Letters, report the probability of this being coincidence is less than one in a million.

"We had a hint back then (in 2017), and now we have evidence," Ajello said.

"The results provide, for the first time, incontrovertible observational evidence that the sub-sample of PeVatron blazars are extragalactic neutrino sources and thus cosmic ray accelerators," Buson said. PeVatron blazars speed up particles up to at least PeV energies. PeV is 10^15 electron-volts.

The discovery of these high-energy neutrino factories represents a major milestone for astrophysics, according to Tramacere. "It places us a step forward in solving the century-old mystery of the origin of cosmic rays," he said.

Ajello said researchers will now study those blazars to understand what makes them good accelerators.

Buson said the statistical analysis has focused only on the most promising sets of IceCube neutrino data. She expects that further sophisticated analytical techniques may bring more discoveries.

The research also illustrates the importance of multi-messenger astronomy, Ajello said. Multi-messenger astrophysics is one goal in the National Academies' "Pathways to Discovery in Astronomy and Astrophysics for the 2020s," a report that sets research priorities for the astronomy and astrophysics communities for the next decade.

For thousands of years, astronomers and astrophysicists relied on light to study the universe. But they can now detect other "messengers" such as cosmic rays, neutrinos and gravitational waves.

"It's like feeling, hearing and seeing at the same time. You'll get a much better understanding," Ajello said. "The same is true in astrophysics because the insight you have from multiple detections of different messengers is much more detailed than you can get from only light."

The European Research Council has funded the described work within the framework of a Starting Grant, PI Sara Buson. ID: 949555, "Mapping Highly-Energetic Messengers across the Universe" (MessMapp). Part of Ajello's work on the project was funded by NASA under contract 80NSSC21K1915.

Research Report:Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories


Related Links
Clemson University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Neutrino Factories in Deep Outer Space
Wurzburg, Germany (SPX) Jul 17, 2022
The Earth's atmosphere is continuously bombarded by cosmic rays. These consist of electrically charged particles of energies up to 1020 electron volts. That is a million times more than the energy achieved in the world's most powerful particle accelerator, the Large Hadron Collider near Geneva. The extremely energetic particles come from deep outer space, they have travelled billions of light years. Where do they originate, what shoots them through the Universe with such tremendous force? These qu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Iraq's date palms: rescuing a national icon

India's mango man, father of 300 varieties

French farms use huge fans to keep dairy cows cool

Desert-grown superfood puts 'healthy' burgers on UAE menus

STELLAR CHEMISTRY
Putin vows to overcome 'colossal' high-tech problems caused by sanctions

Atomic level deposition to extend Moore's law and beyond

Taiwan's TSMC second-quarter revenue rise 44 percent

Optical wireless: The new frontier for self-driving vehicles and portable devices in a chip

STELLAR CHEMISTRY
UK's Tempest fighter project soars as European rival remains in limbo

Northrop Grumman and Boom Supersonic collaborate on supersonic aircraft

Airbus tails Boeing in Farnborough jet orders tussle

Amanda Lee named first female pilot in US navy aviation team

STELLAR CHEMISTRY
Vienna's horse-drawn carriages feel the heat

Chinese ride-hailing giant Didi hit with $1.2 bn fine

Stellantis ending Jeep production in China

Hit by China shutdown, Tesla boosts auto prices and sells bitcoin

STELLAR CHEMISTRY
CIA chief says chaos-hit Sri Lanka made 'dumb bets' on China

Euro up as Russia gas returns, equities struggle ahead of ECB decision

Manolo Blahnik wins decades-long legal battle in China

China urges banks to back property after boycotts; China banks to repay more customers

STELLAR CHEMISTRY
Brazilian Amazon lost 18 trees per second in 2021: report

California wildfire threat to Yosemite giant sequoias 'almost gone'

Race to find Brazil Amazon species before they disappear

The risky business of Amazonian tree climbers

STELLAR CHEMISTRY
EO-Lab is Launched - Your Access to Earth Observation Data

NASA's New Mineral Dust Detector Readies for Launch

China launches two new satellites

BlackSky to provide advanced AI for space-based dynamic monitoring

STELLAR CHEMISTRY
Towards stable, sustained Raman imaging of large samples at the nanoscale

A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.