GPS News
EXO WORLDS
Astronomers find missing link for water in the Solar System
This artist's impression shows the planet-forming disc around the star V883 Orionis. In the outermost part of the disc water is frozen out as ice and therefore can't be easily detected. An outburst of energy from the star heats the inner disc to a temperature where water is gaseous, enabling astronomers to detect it. The inset image shows the two kinds of water molecules studied in this disc: normal water, with one oxygen atom and two hydrogen atoms, and a heavier version where one hydrogen atom is replaced with deuterium, a heavy isotope of hydrogen.
Astronomers find missing link for water in the Solar System
by Staff Writers
Munich, Germany (SPX) Mar 09, 2023

Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have detected gaseous water in the planet-forming disc around the star V883 Orionis. This water carries a chemical signature that explains the journey of water from star-forming gas clouds to planets, and supports the idea that water on Earth is even older than our Sun.

"We can now trace the origins of water in our Solar System to before the formation of the Sun," says John J. Tobin, an astronomer at the National Radio Astronomy Observatory, USA and lead author of the study published in Nature.

This discovery was made by studying the composition of water in V883 Orionis, a planet-forming disc about 1300 light-years away from Earth. When a cloud of gas and dust collapses it forms a star at its centre. Around the star, material from the cloud also forms a disc. Over the course of a few million years, the matter in the disc clumps together to form comets, asteroids, and eventually planets. Tobin and his team used ALMA, in which the European Southern Observatory (ESO) is a partner, to measure chemical signatures of the water and its path from the star-forming cloud to planets.

Water usually consists of one oxygen atom and two hydrogen atoms. Tobin's team studied a slightly heavier version of water where one of the hydrogen atoms is replaced with deuterium - a heavy isotope of hydrogen. Because simple and heavy water form under different conditions, their ratio can be used to trace when and where the water was formed. For instance, this ratio in some Solar System comets has been shown to be similar to that in water on Earth, suggesting that comets might have delivered water to Earth.

The journey of water from clouds to young stars, and then later from comets to planets has previously been observed, but until now the link between the young stars and comets was missing. "V883 Orionis is ESO
in this case," says Tobin. "The composition of the water in the disc is very similar to that of comets in our own Solar System. This is confirmation of the idea that the water in planetary systems formed billions of years ago, before the Sun, in interstellar space, and has been inherited by both comets and Earth, relatively unchanged."

But observing the water turned out to be tricky. "Most of the water in planet-forming discs is frozen out as ice, so it's usually hidden from our view,'' says co-author Margot Leemker, a PhD student at Leiden Observatory in the Netherlands. Gaseous water can be detected thanks to the radiation emitted by molecules as they spin and vibrate, but this is more complicated when the water is frozen, where the motion of molecules is more constrained. Gaseous water can be found towards the centre of the discs, close to the star, where it's warmer. However, these close-in regions are hidden by the dust disc itself, and are also too small to be imaged with our telescopes.

Fortunately, the V883 Orionis disc was shown in a recent study to be unusually hot. A dramatic outburst of energy from the star heats the disc, "up to a temperature where water is no longer in the form of ice, but gas, enabling us to detect it," says Tobin.

The team used ALMA, an array of radio telescopes in northern Chile, to observe the gaseous water in V883 Orionis. Thanks to its sensitivity and ability to discern small details they were able to both detect the water and determine its composition, as well as map its distribution within the disc. From the observations, they found this disc contains at least 1200 times the amount of water in all Earth's oceans.

In the future, they hope to use ESO's upcoming Extremely Large Telescope and its first-generation instrument METIS. This mid-infrared instrument will be able to resolve the gas-phase of water in these types of discs, strengthening the link of water's path all the way from star-forming clouds to solar systems. "This will give us a much more complete view of the ice and gas in planet-forming discs," concludes Leemker.

Research Report:"Deuterium-enriched water ties planet-forming disks to comets and protostars"

Related Links
ESO
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
To new worlds with quantitative spectroscopy
Potsdam, Germany (SPX) Mar 01, 2023
Astronomers from the Leibniz Institute for Astrophysics Potsdam (AIP) and the Vatican Observatory (VO) teamed up to spectroscopically survey more than 1000 bright stars that potentially host exoplanets. The team presents precise values of 54 spectroscopic parameters per star in the first of a series of papers in the journal Astronomy and Astrophysics and releases all its data to the scientific community. This unprecedented large number of parameters will be essential to interpret the stellar light and f ... read more

EXO WORLDS
Agmatix partners with NASA Harvest to support sustainable agricultural

Indonesian farmers fight for their land in nickel mining boom

Esri and Pollen Systems provides agriculture analytics to farms

Biochar offers new promise for climate-smart agriculture

EXO WORLDS
Coherent Logix launches 'HyperX: Midnight', world's most advanced space processor

Brain cells inspire new computer components

Customizing catalysts for solid-state reactions

A step forward in the quest to replace silicon with 2D chips

EXO WORLDS
Iran says deal reached to buy Russian fighter jets

Norway buys US military helicopters to replace European NH90s

Emissions and contrail study with 100 percent sustainable aviation fuel

Sikorsky's hybrid-electric VTOL demo informs future missions

EXO WORLDS
Porsche backs synthetic option in EU fossil fuels row

VW joins e-car price war as global rivalry heats up

Germany angers EU after putting brakes on fossil fuel car ban

EU delays vote on fossil fuel car ban as Germany holds out

EXO WORLDS
US worries China will use supply chains as weapon

Art auctions hit record in 2022 despite economic gloom

EU chief wants 'level playing field' with China

Big Tech's job-slashing wave

EXO WORLDS
Climate-stressed Iraq says will plant 5 million trees

Record deforestation in Brazilian Amazon in February

NASA to measure forest health from above

Brazil's new Indigenous affairs chief sets sights on illegal gold

EXO WORLDS
China launches two new Earth-observation satellites

Smoke particles from wildfires can erode the ozone layer

Record early start again for Tokyo's cherry blossoms

Ozone pollution linked to increased heart disease: study

EXO WORLDS
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.