GPS News  
SPACE MEDICINE
Astronauts demonstrate CRISPR/Cas9 genome editing in space
by Staff Writers
Washington DC (SPX) Jul 01, 2021

NASA Astronaut Christina Kock performing the experimental procedure aboard the International Space Station.

Researchers have developed and successfully demonstrated a novel method for studying how cells repair damaged DNA in space. Sarah Stahl-Rommel of Genes in Space and colleagues present the new technique in the open-access journal PLOS ONE on June 30, 2021.

Damage to an organism's DNA can occur during normal biological processes or as a result of environmental causes, such as UV light. In humans and other animals, damaged DNA can lead to cancer.

Fortunately, cells have several different natural strategies by which damaged DNA can be repaired. Astronauts traveling outside of Earth's protective atmosphere face increased risk of DNA damage due to the ionizing radiation that permeates space.

Therefore, which specific DNA-repair strategies are employed by the body in space may be particularly important. Previous work suggests that microgravity conditions may influence this choice, raising concerns that repair might not be adequate. However, technological and safety obstacles have so far limited investigation into the issue.

Now, Stahl-Rommel and colleagues have developed a new method for studying DNA repair in yeast cells that can be conducted entirely in space. The technique uses CRISPR/Cas9 genome editing technology to create precise damage to DNA strands so that DNA repair mechanisms can then be observed in better detail than would be possible with non-specific damage via radiation or other causes. The method focuses on a particularly harmful type of DNA damage known as a double-strand break.

The researchers successfully demonstrated the viability of the novel method in yeast cells aboard the International Space Station. They hope the technique will now enable extensive research into DNA repair in space. This study marks the first time that CRISPR/Cas9 genome editing has successfully been conducted in space, as well as the first time in space that live cells have undergone successful transformation - incorporation of genetic material originating from outside the organism.

Future research could refine the new method to better mimic the complex DNA damage caused by ionizing radiation. The technique could also serve as a foundation for investigations into numerous other molecular biology topics related to long-term space exposure and exploration.

"It's not just that the team successfully deployed novel technologies like CRISPR genome editing, PCR, and nanopore sequencing in an extreme environment, but also that we were able to integrate them into a functionally complete biotechnology workflow applicable to the study of DNA repair and other fundamental cellular processes in microgravity," said senior author Sebastian Kraves. "These developments fill this team with hope in humanity's renewed quest to explore and inhabit the vast expanse of space."

First author Sarah Stahl Rommel adds, "Being a part of Genes in Space-6 has been a highlight of my career. I saw firsthand just how much can be accomplished when the ideas of innovative students are supported by the best from academia, industry, and NASA. The expertise of the team resulted in the ability to perform high-quality, complex science beyond the bounds of Earth. I hope this impactful collaboration continues to show students and senior researchers alike what is possible onboard our laboratory in space."

Co-author Sarah Castro-Wallace says, "It was an honor to support Genes in Space-6. I am still blown away by the incredible sophistication of the science that was realized when an organism was transformed, its genome edited with CRISPR/Cas9 to cause breaks in the DNA, followed by its growth to allow for DNA repair, and, finally, its DNA sequenced, all in the spaceflight environment onboard the ISS. The ability to perform this all-encompassing, end-to-end investigation is a huge step forward for space biology. This caliber of work speaks to both the exceptional students and the Genes in Space Program."

Research Report: "A CRISPR-based assay for the study of eukaryotic DNA repair onboard the ISS"


Related Links
PLOS
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Cardiac atrophy findings may set course for preventing harm from long space flights
Cincinnati OH (SPX) Jun 25, 2021
In many situations, heart muscle cells do not respond to external stresses in the same ways that skeletal muscle cells do. But under some conditions, heart and skeletal muscles can both waste away at fatally rapid rates, according to a new study led by experts at Cincinnati Children's. The new findings, based on studies of mouse models, represent an important milestone in a long effort to prevent or even reverse cardiac atrophy, which can lead to fatal heart failure when the body loses large amoun ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Slowing down grape ripening boosts flavors prized by winemakers

Italy's Apulia region prohibits farm work in hottest sun

EU reaches deal on farm subsidy overhaul; Aldi to phase out battery farm meat

The origins of farming insects

SPACE MEDICINE
Synthetic biology circuits can respond within seconds

Alpha Data delivers new FPGA-based solution for High Altitude environments

Clearing the way toward robust quantum computing

Physicists uncover secrets of world's thinnest superconductor

SPACE MEDICINE
Visualizing quieter supersonic flight

F-22 training unit to move to Langley-Eustis AFB, Va.

Sikorsky to build nine more CH-53K King Stallion helicopters for U.S. Marines

Army soldiers get involved in helicopter design process

SPACE MEDICINE
Nissan unveils UK battery gigafactory as electric drive accelerates

Canada mandates new cars to be zero-emissions by 2035

Volkswagen to stop selling combustion engines in Europe by 2035

Tesla to 'recall' over 285,000 cars in China due to faulty software

SPACE MEDICINE
China factory activity edges down in June on tight supplies

Asian markets mostly down as virus fears temper recovery optimism

Asian equities mostly down as virus spikes ripple across markets

Asian markets turn lower as virus spikes fuel recovery worries

SPACE MEDICINE
Forest loss threat to one of world's largest eagles

Worst June for Brazil Amazon forest fires since 2007: data

Hotter, more frequent droughts threaten California's iconic blue oak woodlands

Russian forests are crucial to global climate mitigation

SPACE MEDICINE
NASA satellites see upper atmosphere cooling and contracting due to climate change

Scientists use NASA satellite data to track ocean microplastics from space

Artificial intelligence breakthrough gives longer advance warning of ozone issues

European system speeds data flow with 50 000 links

SPACE MEDICINE
Nano-Bio Materials Consortium introduces new AFRL-Industry Co-Development Program

Nanostructured device stops light in its tracks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.