GPS News  
IRON AND ICE
Asteroid-Deflection Mission Passes Key Development Milestone
by Staff Writers
Laurel MD (SPX) Sep 06, 2018

Artist's impression of NASA's Double Asteroid Redirection Test (DART) spacecraft speeding toward the smaller of the two bodies in the Didymos asteroid system. APL manages DART for NASA's Planetary Missions Program Office at Marshall Space Flight Center in Huntsville, Alabama.

The first-ever mission to demonstrate an asteroid deflection technique for planetary defense has moved into the final design and assembly phase, following NASA's approval on Aug. 16.

The Double Asteroid Redirection Test (DART), being designed, built and managed by the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, will test what's known as the kinetic impactor technique - striking an asteroid to shift its orbit - and take a critical step in demonstrating how to protect our planet from a potential impact.

DART's target is the asteroid Didymos, a binary system that consists of Didymos A, about one-half mile in size, and a smaller asteroid orbiting it called Didymos B, about 530 feet across.

After launch - scheduled for spring/summer 2021 - DART will fly to Didymos (Greek for "twin") and use an APL-developed onboard targeting system to aim itself at Didymos B. Then the spacecraft, about the size of a small car, would strike the smaller body at approximately 3.7 miles per second.

"With DART, we want to understand the nature of asteroids by seeing how a representative body reacts when impacted, with an eye toward applying that knowledge if we are faced with the need to deflect an incoming object," said APL's Andrew Rivkin, who co-leads the DART investigation with APL's Andrew Cheng.

"In addition, DART will be the first planned visit to a binary asteroid system, which is an important subset of near-Earth asteroids and one we have yet to fully understand."

The kinetic impact technique works by making a very small change in the orbital speed of the target asteroid. DART will demonstrate the kinetic impact technique and will measure the effect of the DART impact.

Observatories on Earth will determine the resulting change in the orbit of Didymos B around Didymos A, allowing scientists around the world to better determine the capabilities of kinetic impact as an asteroid mitigation strategy.

To assess and formulate capabilities to address potential asteroid threats, NASA established its Planetary Defense Coordination Office in 2016, which is responsible for finding, tracking and characterizing potentially hazardous asteroids and comets coming near Earth, issuing warnings about possible impacts, and assisting plans for and coordination of a U.S. government response to an actual impact threat.


Related Links
Double Asteroid Redirection Test
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Particles collected by Hayabusa give absolute age of asteroid Itokawa
Osaka, Japan (SPX) Aug 28, 2018
Understanding the origin and time evolution of near-Earth asteroids (NEAs) is an issue of scientific interest and practical importance because they are potentially hazardous to the Earth. However, when and how these NEAs were formed and what they suffered during their lifetime remain enigmas. Japanese scientists, including those from Osaka University, closely examined particles collected from the asteroid Itokawa by the spacecraft Hayabusa, finding that the parent body of Itokawa was formed about ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Brazil court lifts ban on glyphosate weedkiller

Epigenome of bread wheat mapped to piece together its genetic heritage

Angry French farmers sow Chinese-owned field in investor protest

France's ban on bee-killing pesticides begins Saturday

IRON AND ICE
Quantum gates between atoms and photons will scale up quantum computers

New molecular wires for single-molecule electronic devices

Scientists predict superelastic properties in a group of iron-based superconductors

Physicists show first proof of Dicke cooperativity in a matter-matter system

IRON AND ICE
Touchdown! NASA's Football Stadium-sized Scientific Balloon Takes Flight

Air Force, Army conduct joint personnel, supply drop exercise

Boeing receives contract for F-15 Eagle targeting pods

Air Force awards contract to M1 for T-38 maintenance

IRON AND ICE
California advances electric vehicle legislation

Tesla wins green rebate lawsuit against Canada's Ontario province

China's Didi apologises for safety lapses after murder

Toyota pours $500 mn into driverless car tie-up with Uber

IRON AND ICE
China's 'Silk Road' project runs into debt jam

Trump says EU bid to end auto tariffs 'not good enough'

Deal on China-backed mega free trade pact likely in November: Singapore

China manufacturing activity strengthens in August

IRON AND ICE
Species-rich forests better compensate environmental impacts

Tree species richness in Amazonian wetlands is three times greater than expected

Carbon reserves in Central American soils still affected by ancient Mayan deforestation

'Natural enemies' theory doesn't fully explain rainforests' biodiversity

IRON AND ICE
UB scientists await launch of NASA ice-monitoring satellite

China is hot spot of ground-level ozone pollution

Ocean satellite Sentinel-6A beginning to take shape

NASA launching Advanced Laser to measure Earth's changing ice

IRON AND ICE
Cannibalistic materials feed on themselves to grow new nanostructures

First-ever colored thin films of nanotubes created

Nanotubes change the shape of water

Fast visible-UV light nanobelt photodetector









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.