Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Aperiodic crystals and beyond
by Staff Writers
Washington DC (SPX) Jun 22, 2015


A building at Melbourne's Federation Square features a pinwheel tiling facade. Image courtesy Uwe Grimm. For a larger version of this image please go here.

Once a contradiction in terms, aperiodic crystals show instead that "long-range order" has never been defined. Whatever it means, decades of intense research have shown it to be more complex and surprising than anyone suspected.

The human brain is very skilled at detecting patterns and recognising order in a structure, and ordered structures permeate cultural achievements of human civilisations, be it in the arts, architecture or music. The ability to detect and describe patterns is also at the basis of all scientific enquiry.

Crystals are paradigms of ordered structures. While order was once seen as synonymous with lattice periodic arrangements, the discoveries of incommensurate crystals and quasicrystals has led to a more general perception of crystalline order, encompassing both periodic and aperiodic crystals. The current definition of crystals rest on their essentially point-like diffraction.

Considering a number of recently investigated model systems, with particular emphasis on non-crystalline ordered structures, the limits of the current definition are explored in a paper [Grimm (2015). Acta Cryst. B71, 258-274; doi:10.1107/S2052520615008409].

The current definition of a crystal is based on the currently known catalogue of periodic and aperiodic crystals. Scientists currently do not know of any materials that have aperiodically ordered structures beyond incommensurate crystals and quasicrystals. The definition of a crystal also reflects the lack of understanding of what constitutes order in matter, and in this sense should be seen as a working definition that may well need to be revised in the future.

In crystallography, order is linked to diffraction, which makes sense because diffraction is the method of choice to experimentally determine the structure of a solid. Grimm demonstrates that there are ordered structures which are not captured by the current definition, either because their pure point diffraction fails to be finitely generated, or because they do not have any non-trivial point component in their diffraction.

While we do not know whether such structures are realistic in nature, it should become possible to manufacture materials with purpose-design structure and properties. In this sense, these are structures that are relevant and should be considered to be within the realm of crystallography.

[Senechal (2015). Acta Cryst. B71, 250-251; doi: 10.1107/S2052520615009907]


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
International Union of Crystallography
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
MIT team creates ultracold molecules
Boston MA (SPX) Jun 15, 2015
The air around us is a chaotic superhighway of molecules whizzing through space and constantly colliding with each other at speeds of hundreds of miles per hour. Such erratic molecular behavior is normal at ambient temperatures. But scientists have long suspected that if temperatures were to plunge to near absolute zero, molecules would come to a screeching halt, ceasing their individual c ... read more


TECH SPACE
Evolution study finds massive genome shift in one generation

Canada requests sanctions against US over meat labelling spat

Wild bees are unpaid farmhands worth billions: study

EU lawmakers back animal cloning ban

TECH SPACE
New boron compounds for organic light-emitting diodes

Exploiting the extraordinary properties of a new semiconductor

Futuristic components on silicon chips, fabricated successfully

New chip makes testing for antibiotic-resistant bacteria faster, easier

TECH SPACE
Green love-in at Paris Air Show but weaker sales

Jacobs Engineering continues work on Australian F-35 bases

France says India to seal deal on Rafale jets in '2 to 3 months'

UTC to rid itself of Sikorsky Aircraft

TECH SPACE
Germany, world champion in car-sharing

California ruling against Uber hits at business model

India's booming taxi-app firms endure bumpy ride

China tech giant Baidu to develop driverless car: media

TECH SPACE
China gives new twist to world's second tallest building

Japan banking giant to sell country's first yuan bond

Australia and China sign bumper free trade deal

China deports British investigator, wife in GSK case

TECH SPACE
Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

Japanese tree plantations causing nitrogen pollution

TECH SPACE
EOMAP provides shallow water bathymetry for the South China Sea

New calculations to improve CO2 monitoring from space

BlackSky Global reveals plan to image Earth in near real-time

NASA Releases Detailed Global Climate Change Projections

TECH SPACE
Unlocking nanofibers' potential

Scientists observe photographic exposure live at the nanoscale

Measuring the mass of molecules on the nano-scale

Novel X-ray lens sharpens view into the nano world




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.