GPS News
TECH SPACE
Advanced Power Semiconductors Enhance Space Industry with Radiation Resistance
illustration only
Advanced Power Semiconductors Enhance Space Industry with Radiation Resistance
by Riko Seibo
Tokyo, Japan (SPX) Feb 20, 2025

A research team led by Dr. Jae Hwa Seo at the Advanced Semiconductor Research Center of KERI has developed cutting-edge technology to evaluate radiation resistance and enhance the reliability of silicon carbide (SiC) power semiconductor devices for space applications.

Power semiconductors are critical in electronic systems, managing current flow and enabling power conversion. While silicon (Si) remains the dominant material in electric vehicles and space-based electronics, wide bandgap (WBG) semiconductors like SiC and diamond are emerging as high-performance alternatives. WBG semiconductors, composed of multiple compound elements, offer superior durability and efficiency. SiC power semiconductors, in particular, can tolerate voltages up to ten times higher than silicon-based counterparts, withstand extreme temperatures, and significantly enhance energy efficiency. In electric vehicles, for example, SiC technology can improve power efficiency by up to 10% compared to silicon.

One of the primary challenges for power semiconductors in space is radiation-induced degradation, which can severely impact their electrical properties in spacecraft, satellites, and planetary rovers. While research on radiation effects is well established in the United States and Europe, Korea's efforts have largely concentrated on silicon-based semiconductor resistance, with limited advancements in SiC applications.

KERI has now pioneered a method to rigorously evaluate the radiation resistance of SiC power semiconductors using Korea's first high-energy space simulation technology. The key breakthrough involved replicating extreme space radiation conditions. Space radiation primarily consists of high-energy particles, with protons accounting for 80-90% of total radiation exposure. Dr. Seo's team employed 100 MeV high-energy protons from the Korea Atomic Energy Research Institute's accelerator facility and collaborated with Professor Yoon Young-jun's team at Andong National University to establish precise exposure protocols.

Through these controlled experiments, KERI analyzed the impact of radiation on domestically developed SiC power semiconductors, monitoring factors such as voltage shifts, leakage current increases, and lattice damage. Using this data, the team formulated design guidelines to ensure the long-term operational reliability of SiC devices in space environments. Their findings were recently published in *Radiation Physics and Chemistry*, an SCI-ranked journal in the top 8.7% of the *Nuclear Science and Technology* category.

Dr. Jae Hwa Seo emphasized the global significance of this research, stating, "Setting various radiation effect parameters and testing core components in similarly simulated environments is considered a key space industry technology worldwide." He added, "This technology will be applied across multiple fields, including aerospace, medical radiation equipment, nuclear power plants, radiation waste treatment, and military and defense electronics."

Moving forward, the research team aims to extend their studies by testing SiC semiconductors under ultra-high energy radiation conditions exceeding 200 MeV. Additionally, they are developing advanced radiation-resistant semiconductors and exploring diamond-based power semiconductors, renowned for their superior material properties. This research is being conducted in collaboration with Gyeongnam Province and the Japanese company Orbray, with the goal of strengthening Korea's position in the high-value aerospace industry.

KERI operates as a government-funded research institution under the National Research Council of Science and Technology, Ministry of Science and ICT. This study was part of KERI's fundamental project, *Development of Core Technologies for High-temperature, High-frequency, High-efficiency (3 High) Power Control Modules.*

Research Report:Degeneration mechanism of 30 MeV and 100 MeV proton irradiation effects on 1.2 kV SiC MOSFETs

Related Links
Korea Electrotechnology Research Institute
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Greenbelt MD (SPX) Feb 12, 2025
The discovery of the new belts, made possible by NASA's Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit. Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been com ... read more

TECH SPACE
Vietnam drags feet over 'urgent' pollution problem

Cognac on the rocks: industry seeks French govt help from Chinese tariffs

EU eyes stricter food import rules in agriculture policy review

Bordeaux wine harvest drops to lowest level since 1991

TECH SPACE
U-M Leads $7.5 Million Initiative to Advance Heat-Tolerant Semiconductor Technology

Amazon unveils its first quantum computing chip

Singapore charges 3 for fraud reportedly linked to Nvidia chips

New ocelot chip makes strides in quantum computing

TECH SPACE
46 killed in Sudan plane crash in residential area

Hong Kong to probe close call involving cargo planes

UK delays approving London Gatwick airport expansion

Search for doomed MH370 resumes 11 years after disappearance

TECH SPACE
'No need to overthink': China Tesla fans unfazed by Musk politics

Aston Martin cuts jobs as weak China demand weighs

Tesla rolls out advanced self-driving functions in China

The last carriage horses of Indonesia's capital endure harsh lives

TECH SPACE
Asian markets mixed after latest Trump tariff threat

US Treasury chief pushes Canada, Mexico to match tariffs on China

China vows response to latest US tariffs also targeting Canada, Mexico

India and EU to finalise free trade agreement by year-end

TECH SPACE
Trees Struggle to Adapt to Climate Change Without Human Assistance CSU Study Finds

Forest mission showcased ahead of launch

Burn land or plant trees? Bolivian farmers weigh their options

Nepal community fights to save sacred forests from cable cars

TECH SPACE
BlackSky Secures Strategic International Contract for Subscription-Based Gen-2 Imagery Services

Sentinel-1C Proves Capability to Monitor Land Deformation with Precision

Glacial Fracking Identified as Undetected Arctic Methane Source

Helium Found in Earth's Core Suggests New Insights into Planetary Formation

TECH SPACE
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.