GPS News  
TECH SPACE
Acoustic tweezers provide much needed pluck for 3-D bioprinting
by Staff Writers
Pittsburgh PA (SPX) Jan 28, 2016


Illustration of a particle trapped by the 3-D trapping node created by two superimposed, orthogonal, standing surface acoustic waves and the induced acoustic streaming.

Researchers, including Carnegie Mellon University President Subra Suresh and collaborators Tony Jun Huang from the Pennsylvania State University and Ming Dao from MIT, have demonstrated that acoustic tweezers can be used to non-invasively move and manipulate single cells along three dimensions, providing a promising new method for 3-D bioprinting. Their findings are published in this week's issue of the Proceedings of the National Academy of Sciences (PNAS).

Multicellular structures within living things are complex and delicate, which makes recreating these structures a daunting task. For example, the human heart contains more than 2 billion muscle cells. Each of these cells must properly interact with one another and with their environment to ensure that the heart functions properly. If those cells aren't placed correctly, or are damaged, it could potentially result in any of a variety of heart conditions.

3-D bioprinting is a promising way to recreate the complex, multicellular architecture of biological tissues. Researchers have been using a combination of approaches, but have yet to develop a single method that has the high level of precision, versatility, multiple dimensionality and single cell resolution needed to form complex multicellular structures while maintaining cell viability, integrity and function.

"The results presented in this paper provide a unique pathway to manipulate biological cells, accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling," said Suresh. "This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, bio-manufacturing, and cancer metastasis."

The Carnegie Mellon, Penn State and MIT team has been at the forefront of developing acoustic tweezers technology, a technique that uses sound waves to trap and manipulate single cells. Acoustic tweezers have been used to separate, align, pattern and transport single cells, and are renowned for their ability to gently manipulate cells without causing any cellular damage. In order to make the technology functional for 3-D printing, the researchers needed to prove that it could capture and manipulate cells along all three dimensions.

The researchers' most recent version of acoustic tweezers involves a microfluidic device that uses acoustic wave generators to produce sound waves along the edges of the device. The device's design allowed researchers to manipulate where the waves would meet along each of the three axes. At these meeting points, the waves formed a 3-D trapping node that captured individual cells. The researchers could then further manipulate the acoustic waves to move and place cells.

To demonstrate how their acoustic tweezers technique could be used for live cell printing, the researchers used the microfluidic device to pick up cells and deposit them in a preselected pattern. The device displayed an elegant level of control over cell spacing and geometry. This indicated to researchers that the device has the potential to effectively create 3-D tissue-like structures, including those with complex geometries.

Additional authors of this paper include: Feng Guo, Zhangming Mao, Yuchao Chen, James P. Lata, Peng Li, Liquiang Ren and Jiayang Liu from Penn State; and Zhiwei Xi, Jian Yang from MIT and Penn State.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Mellon University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Copper deposition to fabricate tiny 3-D objects
Zurich, Switzerland (SPX) Jan 21, 2016
Scientists at ETH Zurich have developed a new method of 3D microprinting. This can be used to manufacture even tiny, partly overhanging structures easily and in a single step. One day, this could pave the way for the manufacture of complex watch components or microtools for keyhole surgery, for example. In most existing 3D microprinting processes, overhanging structures can be achieved onl ... read more


TECH SPACE
Fatty acids from GM oilseed crops could replace fish oil

Weed blasting offers new control method for organic farmers

Eating less meat might not be the way to go green

Bird flu scare hits French foie gras production

TECH SPACE
Molecular-like photochemistry from semiconductor nanocrystals

Physicists develop a cooling system for the processors of the future

Switchable material could enable new memory chips

Quantum computing is coming - are you prepared for it?

TECH SPACE
Russia's strategic bomber PAK DA may takeoff earlier than expected

Iran to buy 114 Airbuses to revamp ageing fleet

NASA-Funded Balloon Launches to Study Sun

Rockwell Collins to support Pakistani C-130 fleet

TECH SPACE
Bumpy road ahead for electric cars: Tesla boss

Conductive concrete could keep roads safer in winter weather

Head of Apple electric car team to leave: report

Renault hasn't used trickery, CEO says after failed emissions tests

TECH SPACE
Japan's 2015 trade deficit narrows as oil prices tumble

Kerry in Laos to discuss bomb legacy and ASEAN partnership

Wallstrom condemns China detention of two Swedes

US firms moving operations out of China: survey

TECH SPACE
NUS study shows the causes of mangrove deforestation in Southeast Asia

The Amazon's future

Tens of millions of trees in danger from California drought

Modeling Amazonian transitional forest micrometeorology

TECH SPACE
SpaceX launches US-French oceans satellite

Flooding along the Mississippi seen from space

Fires burning in Africa and Asia cause high ozone in tropical Pacific

Satellites find sustainable energy in cities

TECH SPACE
Inspiration for fluorescent nanomaterials was taken from plant antenna

Nano-photonics meets nano-mechanics

Nanoribbons show 'topological' transport, potential for new technologies

Low-cost yet high precision glass nanoengraving









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.