Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Accidental discovery dramatically improves electrical conductivity
by Staff Writers
Pullman WA (SPX) Nov 15, 2013


While a doctoral student, Marianne Tarun accidentally discovered that the electrical conductivity of a crystal increases 400-fold when it's exposed to light.

Quite by accident, Washington State University researchers have achieved a 400-fold increase in the electrical conductivity of a crystal simply by exposing it to light. The effect, which lasted for days after the light was turned off, could dramatically improve the performance of devices like computer chips.

WSU doctoral student Marianne Tarun chanced upon the discovery when she noticed that the conductivity of some strontium titanate shot up after it was left out one day. At first, she and her fellow researchers thought the sample was contaminated, but a series of experiments showed the effect was from light.

"It came by accident," said Tarun. "It's not something we expected. That makes it very exciting to share."

The phenomenon they witnessed-"persistent photoconductivity"-is a far cry from superconductivity, the complete lack of electrical resistance pursued by other physicists, usually using temperatures near absolute zero. But the fact that they've achieved this at room temperature makes the phenomenon more immediately practical.

And while other researchers have created persistent photoconductivity in other materials, this is the most dramatic display of the phenomenon.

The research, which was funded by the National Science Foundation, appears this month in the journal Physical Review Letters.

"The discovery of this effect at room temperature opens up new possibilities for practical devices," said Matthew McCluskey, co-author of the paper and chair of WSU's physics department.

"In standard computer memory, information is stored on the surface of a computer chip or hard drive. A device using persistent photoconductivity, however, could store information throughout the entire volume of a crystal."

This approach, called holographic memory, "could lead to huge increases in information capacity," McCluskey said.

Strontium titanate and other oxides, which contain oxygen and two or more other elements, often display a dizzying variety of electronic phenomena, from the high resistance used for insulation to superconductivity's lack of resistance.

"These diverse properties provide a fascinating playground for scientists but applications so far have been limited," said McCluskey.

McCluskey, Tarun and physicist Farida Selim, now at Bowling Green State University, exposed a sample of strontium titanate to light for 10 minutes. Its improved conductivity lasted for days. They theorize that the light frees electrons in the material, letting it carry more current.

.


Related Links
Washington State University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Next-generation semiconductors synthesis
Washington DC (SPX) Nov 14, 2013
Although silicon semiconductors are nearly universal in modern electronics, devices made from silicon have limitations-including that they cease to function properly at very high temperatures. One promising alternative are semiconductors made from combinations of aluminum, gallium, and indium with nitrogen to form aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN), whi ... read more


CHIP TECH
Uruguay to bar foreigners buying land

South Korea's growing 'kimchi deficit'

NGO asks EU to not buy Paraguay beef over indigenous concerns

Egypt farmers fear water supply threat from Ethiopia dam

CHIP TECH
Accidental discovery dramatically improves electrical conductivity

Super-thin membranes clear the way for chip-sized pumps

German chip maker Infineon meets full-year targets: firm

Diamond Imperfections Pave the Way to Technology Gold

CHIP TECH
Vets of Doolittle WWII raid hold a final reunion

Indonesia evacuates bodies after deadly helicopter crash

Boeing and Kongsberg Defense Systems Complete Joint Strike Missile Check on FA-18 Super Hornet

New Boeing B-52 Upgrade to Increase Smart Weapons Capacity by Half

CHIP TECH
Volkswagen to recall over 640,000 vehicles in China

GM moves international operations HQ to Singapore from Shanghai

Three injured at Tesla electric car plant in California

Volkswagen to recall over 207,000 vehicles in China: govt

CHIP TECH
Savers boosting Bitcoin demand in China: exchange

US Treasury chief sees Asia-Pacific trade deal by year-end

Canadian miner says patience running out over Romania plans

Canadian miner hopes to dig for gold in Romania despite setback

CHIP TECH
Brazil Amazon deforestation rose 28 pct in past year: official

Amazon deforestation could mean droughts for western US

Carbon storage recovers faster than plant biodiversity in re-growing tropical forests

Amazon deforestation could trigger droughts in U.S. West

CHIP TECH
UMD, Google and gov. create first detailed map of global forest change

UN tasks imaging satellites for Haiyan relief

Satellites packed like sardines

Global map provides new insights into land use

CHIP TECH
All aboard the nanotrain network

A nano-sized sponge made of electrons

Turning nanoparticles into complex nanostructures

Taking a New Look at Carbon Nanotubes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement