. GPS News .




.
ENERGY TECH
A smarter way to make ultraviolet light beams
by Staff Writers
Ann Arbor, MI (SPX) Dec 01, 2011

In the setup for this experiment, a telecommunication-compatible infrared beam is coupled to the whispering-gallery resonator through a diamond prism and the generated near-infrared, visible, and ultraviolet light are collected by a multi-mode fiber. Photo courtesy of Mona Jarrahi.

Existing coherent ultraviolet light sources are power hungry, bulky and expensive. University of Michigan researchers have found a better way to build compact ultraviolet sources with low power consumption that could improve information storage, microscopy and chemical analysis.

A paper on the research is newly published in Optics Express. The research was led by Mona Jarrahi and Tal Carmon, assistant professors in the Department of Electrical Engineering and Computer Science. The experiment was performed by Jeremy Moore and Matthew Tomes, both graduate students in the same department.

The researchers have optimized a type of optical resonator to take an infrared signal from relatively cheap telecommunication-compatible lasers and, using a low-power, nonlinear process, boost it to a higher-energy ultraviolet beam.

Their optical resonator is a millimeter-scale disk with a precisely engineered shape and smooth surface polishing to encourage the input beam to gain power as it circulates inside the resonator.

"We optimized the structure to achieve high gain over a broad range of optical wavelengths," Jarrahi said. "This allows us to make low-cost, wavelength-tunable ultraviolet sources using low-infrared power levels."

The researchers used their resonator to generate the fourth harmonic of the infrared beam they started with.

Like the harmonic distortions you get from new sound frequencies when you crank up a loudspeaker, engineers can generate harmonics of light by using the right materials. By pushing light beams through a nonlinear medium, they can coax out offshoot beams that are double, or in this case, quadruple the frequency and energy of the input beam, and one-quarter of the original wavelength.

Lasers get progressively more difficult to generate and more inefficient, as engineers aim for shorter wavelengths, the researchers said.

"As we go from green to blue, the efficiency of the laser goes down. Going to UV lasers is even harder," Jarrahi said. "This principle was first suggested by Einstein and is the reason why green laser pointers do not actually contain a green laser. It is actually a red laser and its wavelength is divided by two to become green light."

Ultraviolet light sources have applications in chemical detection, crisper medical imaging and finer lithography for more sophisticated integrated circuits and greater computer memory capacity.

The paper is titled "Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator." The research was funded by the National Science Foundation and the Air Force Office of Scientific Research.

Related Links
University of Michigan
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
UO chemists develop liquid-based hydrogen storage material
Eugene OR (SPX) Nov 30, 2011
University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable - an accomplishment that offers a possible route through current storage and transportation obstacles. Reporting in a paper placed online ahead of publication in the Journal of the American Chemical Society ... read more


ENERGY TECH
Herbicide may affect plants thought to be resistant

Study of flower petals shows evolution at the cellular level

Soybean adoption came early by many cultures, archaeologists say

How drought-tolerant grasses came to be

ENERGY TECH
The interplay of dancing electrons

Toshiba to shut three Japan semiconductor plants

In new quantum-dot LED design, researchers turn troublesome molecules to their advantage

Researchers watch a next-gen memory bit switch in real time

ENERGY TECH
Air France suspends maintenance in China

US 'concerned' about EU airline carbon rules

German airline seeks Chinese, Gulf investors: report

Brazil a serious rival in air transport

ENERGY TECH
US car sales accelerate in November

At a crossroads who runs the red light

Cars go green and online as Tokyo Motor Show opens

Volvo to boost staff, mainly in China: CEO

ENERGY TECH
Protests force Peru to suspend gold mine

Violent protests halt $4.8 bn Peru mining project

Argentina eyes expanding steel market

Chinese developers plan online auctions: report

ENERGY TECH
World deforestation rate accelerating: UN

World deforestation rate accelerating: UN

UN mobilizes civil society for Rio's environment summit

Amnesty urges Brazil to probe Indian chief's killing

ENERGY TECH
APL Proposes First Global Orbital Observation Program

Government investment brings low cost radar satellites to market

Indra Leads Development And Provision Of The Ground Segment Of Satellite Paz

Lightning-made Waves in Earth's Atmosphere Leak Into Space

ENERGY TECH
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement