Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
A new tool measures the distance between phonon collisions
by Staff Writers
Boston MA (SPX) Jun 05, 2015


File image.

Today's computer chips pack billions of tiny transistors onto a plate of silicon within the width of a fingernail. Each transistor, just tens of nanometers wide, acts as a switch that, in concert with others, carries out a computer's computations. As dense forests of transistors signal back and forth, they give off heat - which can fry the electronics, if a chip gets too hot.

Manufacturers commonly apply a classical diffusion theory to gauge a transistor's temperature rise in a computer chip. But now an experiment by MIT engineers suggests that this common theory doesn't hold up at extremely small length scales.

The group's results indicate that the diffusion theory underestimates the temperature rise of nanoscale heat sources, such as a computer chip's transistors. Such a miscalculation could affect the reliability and performance of chips and other microelectronic devices.

"We verified that when the heat source is very small, you cannot use the diffusion theory to calculate temperature rise of a device. Temperature rise is higher than diffusion prediction, and in microelectronics, you don't want that to happen," says Professor Gang Chen, head of the Department of Mechanical Engineering at MIT. "So this might change the way people think about how to model thermal problems in microelectronics."

The group, including graduate student Lingping Zeng and Institute Professor Mildred Dresselhaus of MIT, Yongjie Hu of the University of California at Los Angeles, and Austin Minnich of Caltech, has published its results this week in the journal Nature Nanotechnology.

Phonon mean free path distribution
Chen and his colleagues came to their conclusion after devising an experiment to measure heat carriers' "mean free path" distribution in a material. In semiconductors and dielectrics, heat typically flows in the form of phonons - wavelike particles that carry heat through a material and experience various scatterings during their propagation.

A phonon's mean free path is the distance a phonon can carry heat before colliding with another particle; the longer a phonon's mean free path, the better it is able to carry, or conduct, heat.

As the mean free path can vary from phonon to phonon in a given material - from several nanometers to microns - the material exhibits a mean free path distribution, or range. Chen, the Carl Richard Soderberg Professor in Power Engineering at MIT, reasoned that measuring this distribution would provide a more detailed picture of a material's heat-carrying capability, enabling researchers to engineer materials, for example, using nanostructures to limit the distance that phonons travel.

The group sought to establish a framework and tool to measure the mean free path distribution in a number of technologically interesting materials. There are two thermal transport regimes: diffusive regime and quasiballistic regime.

The former returns the bulk thermal conductivity, which masks the important mean free path distribution. To study phonons' mean free paths, the researchers realized they would need a small heat source compared with the phonon mean free path to access the quasiballistic regime, as larger heat sources would essentially mask individual phonons' effects.

Creating nanoscale heat sources was a significant challenge: Lasers can only be focused to a spot the size of the light's wavelength, about one micron - more than 10 times the length of the mean free path in some phonons.

To concentrate the energy of laser light to an even finer area, the team patterned aluminum dots of various sizes, from tens of micrometers down to 30 nanometers, across the surface of silicon, silicon germanium alloy, gallium arsenide, gallium nitride, and sapphire. Each dot absorbs and concentrates a laser's heat, which then flows through the underlying material as phonons.

In their experiments, Chen and his colleagues used microfabrication to vary the size of the aluminum dots, and measured the decay of a pulsed laser reflected from the material - an indirect measure of the heat propagation in the material. They found that as the size of the heat source becomes smaller, the temperature rise deviates from the diffusion theory.

They interpret that as the metal dots, which are heat sources, become smaller, phonons leaving the dots tend to become "ballistic," shooting across the underlying material without scattering. In these cases, such phonons do not contribute much to a material's thermal conductivity. But for much larger heat sources acting on the same material, phonons tend to collide with other phonons and scatter more often. In these cases, the diffusion theory that is currently in use becomes valid.

A detailed transport picture
For each material, the researchers plotted a distribution of mean free paths, reconstructed from the heater-size-dependent thermal conductivity of a material. Overall, they observed the anticipated new picture of heat conduction: While the common, classical diffusion theory is applicable to large heat sources, it fails for small heat sources. By varying the size of heat sources, Chen and his colleagues can map out how far phonons travel between collisions, and how much they contribute to heat conduction.

Zeng says that the group's experimental setup can be used to better understand, and potentially tune, a material's thermal conductivity. For example, if an engineer desires a material with certain thermal properties, the mean free path distribution could serve as a blueprint to design specific "scattering centers" within the material - locations that prompt phonon collisions, in turn scattering heat propagation, leading to reduced heat carrying ability.

Although such effects are not desirable in keeping a computer chip cool, they are suitable in thermoelectric devices, which convert heat to electricity. For such applications, materials that are electrically conducting but thermally insulating are desired.

"The important thing is, we have a spectroscopy tool to measure the mean free path distribution, and that distribution is important for many technological applications," Zeng says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
How to cut a vortex into slices
Moscow, Russia (SPX) Jun 05, 2015
A lot of problems, associated with the mixing of the liquid in the microchannels, could be solved via proper organization of the inhomogeneous slip on the walls of these channels. This is the conclusion made by the joint group of Russian and German scientists lead by Olga Vinogradova, who is a professor at the M.V. Lomonosov Moscow State University and also a head of laboratory at the A.N. ... read more


TIME AND SPACE
Scientists see a natural place for 'rewilded' plants in organic farming

Citizen science helps protect nests of a raptor in farmland

Bee populations face another threat: aluminum

Move over Arabidopsis, there's a new model plant in town

TIME AND SPACE
Futuristic components on silicon chips, fabricated successfully

New chip makes testing for antibiotic-resistant bacteria faster, easier

A chip placed under the skin for more precise medicine

Collaboration could lead to biodegradable computer chips

TIME AND SPACE
Northrop Grumman unveils first NATO ISR aircraft

U.S. orders components for 94 F-35s

The rise and fall of giant balloons on the edge of space

Northrop Grummans planned upgrade for B-2 passes CDR

TIME AND SPACE
China tech giant Baidu to develop driverless car: media

Tesla boss downplays government subsidy as 'pittance'

Self-driving cars vulnerable to cyberattack, experts warn

Can virtual drivers resembling the user increase trust in smart cars

TIME AND SPACE
EU business confidence in China at new low: survey

China to have 'veto power' over infrastructure bank: report

Israel says China demands no workers in settlements

Archaeologists find evidence of prehistoric gold trade

TIME AND SPACE
Conservationists press Jakarta to follow industry lead on forests

Not all national parks are created equal

Native-American settlement modified Western New York forests

New tropical tree species await discovery

TIME AND SPACE
Egypt Mulls Buying Russian Satellite Images After EgyptSat 2 Loss

New technique harnesses everyday seismic waves to image the Earth

Astronomers make 3-D movies of plasma tubes

NASA Soil Moisture Mission Begins Science Operations

TIME AND SPACE
Scientists observe photographic exposure live at the nanoscale

Measuring the mass of molecules on the nano-scale

Novel X-ray lens sharpens view into the nano world

Engineering phase changes in nanoparticle arrays




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.