GPS News  
TECH SPACE
A new theory to describe widely used material
by Staff Writers
Linkoping, Sweden (SPX) Dec 27, 2017


Klas Tybrandt at Linkoping University with power paper. He has put forward a theoretical model that explains the coupling between ions and electrons in the widely used conducting polymer PEDOT:PSS. The model has profound implications for applications in printed electronics, energy storage in paper and bioelectronics.

LiU researcher Klas Tybrandt has put forward a theoretical model that explains the coupling between ions and electrons in the widely used conducting polymer PEDOT:PSS. The model has profound implications for applications in printed electronics, energy storage in paper, and bioelectronics.

One of the most commonly used materials in organic electronics is the conducting polymer PEDOT:PSS, and tens of thousands of scientific articles have been published referring to the material and its properties.

One of the major advantages of PEDOT:PSS is that it conducts both ions and electrons, but a model that explains how this works has, until now, not been available. We know that the material has several useful properties, but we don't know why.

Klas Tybrandt, principal investigator in the Soft Electronics group at the Laboratory of Organic Electronics, Campus Norrkoping, has developed a theoretical model for the interaction between ions and electrons that explains how ion transport and electron transport are related. The model has been published in the prestigious journal Science Advances.

"Classical electrochemical models have mainly been used in the past for this type of system, and this has led to a certain degree of confusion, since the models do not include the properties of semiconductors. We have used a purely physical description that clarifies the concepts," says Klas Tybrandt.

The material is a mixture of a semiconducting polymer and a polymer that conducts ions. The two phases are mixed down to the nanometer-scale, and even a thin film contains a huge number of interfaces. At the contact surface between the electronic and the ionic phases, what is known as an "electrical double layer" forms, which means that a charge separation builds up here between ions and electrons.

"We have combined semiconductor physics with a theory for electrolytes and electrical double layers, and we have been able to describe the properties of the material on a theoretical basis. We have also experimental results showing that the model agrees with laboratory measurements," says Klas Tybrandt.

PEDOT:PSS is one of several polymeric materials that act in the same way. Increased understanding of the material and its unique properties is a major advance for researchers in several areas of organic electronics.

One such area is printed electronics, where it is now possible to calculate and optimise the performance of electrochromic displays and transistors.

Another area that benefits from the new model is bioelectronics. Here, materials that conduct both ions and electrons are particularly interesting, since they can couple the ion conducting systems of the body with the electronic circuits in, for example, sensors.

"We can optimise the applications in a completely new way, now that we understand how these materials work," says Klas Tybrandt.

A third area is the storage of energy in paper, a field in which LiU researchers are world-leaders.

"Understanding the complexity of these polymers allows us to develop and optimise the technology. This will be one of the areas for the newly opened Wallenberg Wood Science Center," says Klas Tybrandt.

Research Report: Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends, written by Klas Tybrandt, Igor V Zozoulenko and Magnus Berggren, Laboratory of Organic Electronics, Linkoping University, has been published in Science Advances, DOI 10.1126/sciadv.aao3659

TECH SPACE
Experiments reveal evidence of exotic new matter state
Washington (UPI) Dec 22, 2017
Scientists in Germany have observed evidence of a new and exotic matter state. The discovery could offer insights into the phenomena of superconductivity. When scientists confined ultracold atoms to a 2D medium, scientists witnessed a unique type of particle pairing. They described the unusual interactions between the particles, called fermions, in a new paper published this week in the ... read more

Related Links
Linkoping University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
How much soil goes get washed down the drain

Archaeologist says fire, not corn, key to prehistoric survival in arid Southwest

Meadows beat out shrubs when it comes to storing carbon

Uncovering varied pathways to agriculture

TECH SPACE
French aerospace giant Thales acquires SIM maker Gemalto

Single-photon detector can count to 4

Revolutionizing electronics using Kirigami

Researchers quantify factors for reducing power semiconductor resistance by two-thirds

TECH SPACE
Boeing to upgrade Air Force E-3 Sentry cockpits

US to give Lebanon its first attack helicopters

More AW139 helicopters ordered for Italy

Northrop Grumman to service Army ISR aircraft

TECH SPACE
UPS orders 125 all-electric trucks from Tesla

VW sacks executive jailed over 'dieselgate': report

Baidu accuses former exec of stealing self-driving car technology

German rail operator, army seek damages over truck cartel

TECH SPACE
President Xi puts his stamp on China's economy, permits more debt

China's economic growth to slow next year, says state think tank

UK accused of trying to block US trade deal transparency

China issues code of conduct for firms investing abroad

TECH SPACE
African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril

Forests are the key to fresh water

TECH SPACE
Space Mystery Solved by Student Satellite

Scientists share various perspectives on ozone layer recovery

APL Monitoring Instrument Rides into Space

NASA's CATS concludes successful mission on Space Station

TECH SPACE
Discovery sets new world standard in nano generators

A 100-fold leap to GigaDalton DNA nanotech

New nanowires are just a few atoms thick

Physicists explain metallic conductivity of thin carbon nanotube films









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.