GPS News  
EXO WORLDS
A new Goldilocks for habitable planets
by Staff Writers
New Haven CT (SPX) Aug 22, 2016


illustration only

The search for habitable, alien worlds needs to make room for a second "Goldilocks," according to a Yale University researcher.

For decades, it has been thought that the key factor in determining whether a planet can support life was its distance from its sun. In our solar system, for instance, Venus is too close to the sun and Mars is too far, but Earth is just right. That distance is what scientists refer to as the "habitable zone," or the "Goldilocks zone."

It also was thought that planets were able to self-regulate their internal temperature via mantle convection - the underground shifting of rocks caused by internal heating and cooling. A planet might start out too cold or too hot, but it would eventually settle into the right temperature.

A new study, appearing in the journal Science Advances on Aug. 19, suggests that simply being in the habitable zone isn't sufficient to support life. A planet also must start with an internal temperature that is just right.

"If you assemble all kinds of scientific data on how Earth has evolved in the past few billion years and try to make sense out of them, you eventually realize that mantle convection is rather indifferent to the internal temperature," said Jun Korenaga, author of the study and professor of geology and geophysics at Yale.

Korenaga presents a general theoretical framework that explains the degree of self-regulation expected for mantle convection and suggests that self-regulation is unlikely for Earth-like planets.

"The lack of the self-regulating mechanism has enormous implications for planetary habitability," Korenaga said. "Studies on planetary formation suggest that planets like Earth form by multiple giant impacts, and the outcome of this highly random process is known to be very diverse."

Such diversity of size and internal temperature would not hamper planetary evolution if there was self-regulating mantle convection, Korenaga said. "What we take for granted on this planet, such as oceans and continents, would not exist if the internal temperature of Earth had not been in a certain range, and this means that the beginning of Earth's history cannot be too hot or too cold."

The NASA Astrobiology Institute supported the research. Korenaga is a co-investigator of the NASA "Alternative Earths" team, which is organized around the principle of understanding how the Earth has maintained a persistent biosphere through most of its history, how the biosphere manifests in "biosignatures" on a planetary scale, and how reconstructing this history can inform the search for life within and beyond the solar system.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Yale University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO WORLDS
Venus-like Exoplanet Might Have Oxygen Atmosphere, but Not Life
Boston MA (SPX) Aug 19, 2016
The distant planet GJ 1132b intrigued astronomers when it was discovered last year. Located just 39 light-years from Earth, it might have an atmosphere despite being baked to a temperature of around 450 degrees Fahrenheit. But would that atmosphere be thick and soupy or thin and wispy? New research suggests the latter is much more likely. Harvard astronomer Laura Schaefer (Harvard-Smithson ... read more


EXO WORLDS
New method for quantifying methane emissions from manure management

Reduced ecosystem functions in oil palm plantations

Plant response to carbon dioxide emissions depends on their neighbors

Researchers discover a special power in wheat

EXO WORLDS
See-through circuitry

X-ray optics on a chip

Prototype chip could help make quantum computing practical

USC quantum computing researchers reduce quantum information processing errors

EXO WORLDS
NASA-funded balloon mission begins fourth campaign

Unleaded Zeppelin: Why Airships May Again Start to Compete With Planes

Lockheed inaugurates T-50A ground-training facility

Power of Pink Provides NASA with Pressure Pictures

EXO WORLDS
Saab expands in Denmark

Uber to launch driverless car service in Pittsburgh

Volvo and Uber form driverless car venture

Obama admin unveils new truck fuel standards

EXO WORLDS
Samsung buys US luxury home appliance maker Dacor

Taiwan's Hon Hai gets Chinese green light for Sharp deal

Montreal march kicks off World Social Forum

Down but not out: fears ease over China's weaker yuan

EXO WORLDS
Logging can decrease water infiltration into forest soils, study finds

A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

EXO WORLDS
CYGNSS Undergoes Vibration Testing

Van Allen probes catch rare glimpse of supercharged radiation belt

New map of world vegetation reveals substantial changes since 1980s

NASA Study Analyzes Four Corners Methane Sources

EXO WORLDS
Researchers resolve problem that has been holding back a tech revolution

Nanoribbons in solutions mimic nature

Quantum dots with impermeable shell: A powerful tool for nanoengineering

Tailored probes for atomic force microscopes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.