Subscribe free to our newsletters via your
. GPS News .




NANO TECH
A giant step in a miniature world
by Staff Writers
Zurich, Switzerland (SPX) Aug 02, 2012


This is a cross-section through two chip-sized glass plates in which a nano particle is trapped in an energy hole (or "potential well" to use the scientific term). The colored fields show the different charges in the electrostatic field. The red zone signifies a very low charge, while the blue edges have a strong charge. Credit: Picture: University of Zurich.

In order to observe the individual particles in a solution, Prof. Madhavi Krishnan and her co-workers "entice" each particle into an "electrostatic trap". It works like this: between two glass plates the size of a chip, the researchers create thousands of round energy holes. The trick is that these holes have just a weak electrostatic charge.

The scientists than add a drop of the solution to the plates, whereupon each particle falls into an energy hole and remains trapped there. But the particles do not remain motionless in their trap.

Instead, molecules in the solution collide with them continuously, causing the particles to move in a circular motion. "We measure these movements, and are then able to determine the charge of each individual particle", explains Prof. Madhavi Krishnan.

Put simply, particles with just a small charge make large circular movements in their traps, while those with a high charge move in small circles. This phenomenon can be compared to that of a light-weight ball which, when thrown, travels further than a heavy one.

The US physicist Robert A. Millikan used a similar method 100 years ago in his oil drop experiment to determine the velocity of electrically charged oil drops. In 1923, he received the Nobel Prize in physics in recognition of his achievements.

"But he examined the drops in a vacuum", Prof. Krishnan explains. "We on the other hand are examining nano particles in a solution which itself influences the properties of the particles".

Electrostatic charge of "nano drugs packages"
For all solutions manufactured industrially, the electrical charge of the nano particles contained therein is also of primary interest, because it is the electrical charge that allows a fluid solution to remain stable and not to develop a lumpy consistency.

"With our new method, we get a picture of the entire suspension along with all of the particles contained in it", emphasizes Prof. Madhavi Krishnan. A suspension is a fluid in which miniscule particles or drops are finely distributed, for example in milk, blood, various paints, cosmetics, vaccines and numerous pharmaceuticals.

"The charge of the particles plays a major role in this", the Zurich-based scientist tells us.

One example is the manufacture of medicines that have to be administered in precise doses over a longer period using drug-delivery systems. In this context, nano particles act as "packages" that transport the drugs to where they need to take effect.

Very often, it is their electrical charge that allows them to pass through tissue and cell membranes in the body unobstructed and so to take effect. "That's why it is so important to be able to measure their charge. So far most of the results obtained have been imprecise", the researcher tells us.

"The new method allows us to even measure in real-time a change in the charge of a single entity", adds Prof. Madhavi Krishnan. "This is particularly exciting for basic research and has never before been possible".

This is because changes in charge play a role in all bodily reactions, whether in proteins, large molecules such as the DNA double helix, where genetic make-up is encoded, or cell organelles. "We're examining how material works in the field of millionths of a millimeter".

Literature: Mojarad, N, and Krishnan, M., Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nature Nanotechnology (2012)

.


Related Links
University of Zurich
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Cutting the graphene cake
Manchester UK (SPX) Aug 02, 2012
Sandwiching individual graphene sheets between insulating layers in order to produce electrical devices with unique new properties, the method could open up a new dimension of physics research. Writing in Nature Materials, the scientists show that a new side-view imaging technique can be used to visualize the individual atomic layers of graphene within the devices they have built. They foun ... read more


NANO TECH
Parched fields as drought devastates US crops

Public strongly supports programs helping farmers adapt to climate change

Study: All chickens have Asian roots

Japanese Kobe beef debuts in Hong Kong

NANO TECH
How to avoid traps in plastic electronics

HP claims win in legal battle with Oracle

Japan's Toshiba falls into quarterly net loss

World's smallest semiconductor laser created by University of Texas scientists

NANO TECH
Raytheon achieves delivery and operational milestones on FA-18 avionics systems

E-jet deal opens Venezuela for Embraer

Boeing Integrates Next-Gen Joint Helmet Mounted Cueing System on Silent Eagle

US man points laser at Navy pilots, faces 20 years in prison

NANO TECH
US auto sales grow but GM, Ford stumble

Honda quarterly profit jumps fourfold to $1.7 bn

Nissan's profit down 15% on strong yen, Europe woe

Why Some Types Of Multitasking Are More Dangerous Than Others

NANO TECH
Greenpeace report exposes land sell-off

L'Oreal heiress sells island paradise in Seychelles

Chinese bids welcomed in $42 bn Australian asset sale

BHP warns of spending cuts as China cools

NANO TECH
Turkmenistan to plant huge forest in Aral Sea region

Taking Stock Of Georgia State Forests

Tropical arks reach tipping point

Forest carbon monitoring breakthrough in Colombia

NANO TECH
France orders Google to hand over Street View data

Space Technologies Tackle Human and Environmental Security Problems

Chinese mapping satellite handed over to surveying authority

European data center for GMES Sentinel satellites at DLR

NANO TECH
Cutting the graphene cake

A giant step in a miniature world

A new era in modern analytical chemistry with Nano-FTIR

Entropy can lead to order, paving the route to nanostructures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement