GPS News  
ENERGY TECH
A different spin on superconductivity
by Staff Writers
College Park MD (SPX) Apr 09, 2018

Artistic representation of high-spin pairs forming in a YPtBi crystal, leading to unconventional superconductivity.

When you plug in an appliance or flip on a light switch, electricity seems to flow instantly through wires in the wall. But in fact, the electricity is carried by tiny particles called electrons that slowly drift through the wires. On their journey, electrons occasionally bump into the material's atoms, giving up some energy with every collision.

The degree to which electrons travel unhindered determines how well a material can conduct electricity. Environmental changes can enhance conductivity, in some cases drastically. For example, when certain materials are cooled to frigid temperatures, electrons team up so they can flow uninhibited, without losing any energy at all - a phenomenon called superconductivity.

Now a team* of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. While predicted to occur in other non-material systems, this type of behavior has remained elusive. The team's research, published in the April 6 issue of Science Advances, reveals effects that are profoundly different from anything that has been seen before with superconductivity.

Electron interactions in superconductors are dictated by a quantum property called spin. In an ordinary superconductor, electrons, which carry a spin of 0.5, pair up and flow uninhibited with the help of vibrations in the atomic structure.

This theory is well-tested and can describe the behavior of most superconductors. In this new research, the team uncovers evidence for a new type of superconductivity in the material YPtBi, one that seems to arise from spin-3/2 particles.

"No one had really thought that this was possible in solid materials," explains Johnpierre Paglione, a UMD physics professor and senior author on the study. "High-spin states in individual atoms are possible but once you put the atoms together in a solid, these states usually break apart and you end up with spin one-half. "

Finding that YPtBi was a superconductor surprised the researchers in the first place. Most superconductors start out as reasonably good conductors, with a lot of mobile electrons - an ingredient that YPtBi is lacking. According to the conventional theory, YPtBi would need about a thousand times more mobile electrons in order to become superconducting at temperatures below 0.8 Kelvin. And yet, upon cooling the material to this temperature, the team saw superconductivity happen anyway. This was a first sign that something exotic was going on inside this material.

After discovering the anomalous superconducting transition, researchers made measurements that gave them insight into the underlying electron pairing. They studied a telling feature of superconductors - their interaction with magnetic fields.

As the material undergoes the transition to a superconductor, it will try to expel any added magnetic field from its interior. But the expulsion is not completely perfect. Near the surface, the magnetic field can still enter the material but then quickly decays away. How far it goes in depends on the nature of the electron pairing, and changes as the material is cooled down further and further.

To probe this effect, the researchers varied the temperature in a small sample of the material while exposing it to a magnetic field more than ten times weaker than the Earth's. A copper coil surrounding the sample detected changes to the superconductor's magnetic properties and allowed the team to sensitively measure tiny variations in how deep the magnetic field reached inside the superconductor.

The measurement revealed an unusual magnetic intrusion. As the material warmed from absolute zero, the field penetration depth for YPtBi increased linearly instead of exponentially as it would for a conventional superconductor.

This effect, combined with other measurements and theory calculations, constrained the possible ways that electrons could pair up. The researchers concluded that the best explanation for the superconductivity was electrons disguised as particles with a higher spin - a possibility that hadn't even been considered before in the framework of conventional superconductivity.

The discovery of this high-spin superconductor has given a new direction for this research field. "We used to be confined to pairing with spin one-half particles," says Hyunsoo Kim, lead author and a UMD assistant research scientist. "But if we start considering higher spin, then the landscape of this superconducting research expands and just gets more interesting."

For now, many open questions remain, including how such pairing could occur in the first place. "When you have this high-spin pairing, what's the glue that holds these pairs together?" says Paglione. "There are some ideas of what might be happening, but fundamental questions remain-which makes it even more fascinating."

Research paper


Related Links
University of Maryland
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Superconductivity in an alloy with quasicrystal structure
Nagoya, Japan (SPX) Mar 27, 2018
Extraordinary things happen at low temperatures. One of the best examples is surely superconductivity. This phenomenon, wherein the electrical resistance of a solid drops to zero below a critical temperature, has been known for a century, and now has applications in science and industry. Physics and chemistry students can even make their own levitating magnets from superconducting alloys. Most superconductors, like most solids, are crystalline: their atomic structures are built from periodically r ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Animals rights groups scent blood as fashion labels go fur-free

Silk Road nomads were the original foodies

Environmentally friendly cattle production

El Nino can affect up to two-thirds of the world's harvests

ENERGY TECH
Broadcom moves back to the US

A new kind of quantum bits in two dimensions

Precision atom qubits achieve major quantum computing milestone

The future of photonics using quantum dots

ENERGY TECH
Pilot dies in Myanmar military plane crash

Boeing awarded $1.1B for Super Hornets for Kuwait

Navy taps Lockheed Martin for more F-35 support

Japan's E-2D program to receive training, support from Northrop Grumman

ENERGY TECH
US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

Research hints at double the driving range for electric vehicles

Waymo and Jaguar team up on self-driving luxury ride

ENERGY TECH
China calls on world to stand up over trade; Launches WTO challenge

Trump threatens $100 bln more tariffs on China

China to inject $9.7bn into troubled Anbang

US blasts 'unfair' Chinese tariffs on 128 products

ENERGY TECH
Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

Drought-induced changes in forest composition amplify effects of climate change

Amazon deforestation is close to tipping point

ENERGY TECH
Taking the Pulse of Greenhouse Gases

Proba-1 spots Giza pyramids from space

Sentinel-3B launch preparations in full swing

Research shows fertilization drives global lake emissions of greenhouse gases

ENERGY TECH
A treasure trove for nanotechnology experts

UCLA researchers develop a new class of two-dimensional materials

Nanostructures made of previously impossible material

Mining hardware helps scientists gain insight into silicon nanoparticles









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.