Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
A complex logic circuit made from bacterial genes
by Diana Lutz for WUSTL News
St. Louis MO (SPX) Oct 15, 2012


illustration only

By force of habit we tend to assume computers are made of silicon, but there is actually no necessary connection between the machine and the material. All that an engineer needs to do to make a computer is to find a way to build logic gates - the elementary building blocks of digital computers - in whatever material is handy.

So logic gates could theoretically be made of pipes of water, channels for billiard balls or even mazes for soldier crabs.

By comparison Tae Seok Moon's ambition, which is to build logic gates out of genes, seems eminently practical. As a postdoctoral fellow in the lab of Christopher Voigt, PhD, a synthetic biologist at the Massachusetts Institute of Technology, he recently made the largest gene (or genetic) circuit yet reported.

Moon, PhD, now an assistant professor of energy, environmental and chemical engineering in the School of Engineering and Applied Science at Washington University in St. Louis is the lead author of an article describing the project in the Oct. 7 issue of Nature. Voigt is the senior author.

The tiny circuits constructed from these gene gates and others like them may one day be components of engineered cells that will monitor and respond to their environments.

The number of tasks they could undertake is limited only by evolution and human ingenuity. Janitor bacteria might clean up pollutants, chemical-engineer bacteria pump out biofuels and miniature infection-control bacteria might bustle about killing pathogens.

How to make an AND gate out of genes
The basis of modern computers is the logic gate, a device that makes simple comparisons between the bits, the 1s and 0s, in which computers encode information. Each logic gate has multiple inputs and one output. The output of the gate depends on the inputs and the operation the gate performs.

An AND gate, for example, turns on only if all of its inputs are on. An OR gate turns on if any of its inputs are on.

Suggestively, genes are turned on or off when a transcription factor binds to a region of DNA adjacent to the gene called a promotor.

To make an AND gate out of genes, however, Moon had to find a gene whose activation is controlled by at least two molecules, not one. So only if both molecule 1 AND molecule 2 are present will the gene be turned on and translated into protein.

Such a genetic circuit had been identified in Salmonella typhimurium, the bacterium that causes food poisoning. In this circuit, the transcription factor can bind to the promotor of a gene only if a molecule called a chaperone is present. This meant the genetic circuit could form the basis of a two-input AND gate.

The circuit Moon eventually built consisted of four sensors for four different molecules that fed into three two-input AND gates. If all four molecules were present, all three AND gates turned on and the last one produced a reporter protein that fluoresced red, so that the operation of the circuit could be easily monitored.

In the future, Moon says, a synthetic bacterium with this circuit might sense four different cancer indicators and, in the presence of all four, release a tumor-killing factor.

Crosstalk and timing faults
There are huge differences, of course, between the floppy molecules that embody biological logic gates and the diodes and transistors that embody electronic ones.

Engineers designing biological circuits worry a great deal about crosstalk, or interference. If a circuit is to work properly, the molecules that make up one gate cannot bind to molecules that are part of another gate.

This is much more of a problem in a biological circuit than in an electronic circuit because the interior of a cell is a kind of soup where molecules mingle freely.

To ensure that there wouldn't be crosstalk among his AND gates, Moon mined parts for his gates from three different strains of bacteria: Shigella flexneri and Pseudomonas aeruginosa, as well as Salmonella.

Although the parts from the three different strains were already quite dissimilar, he made them even more so by subjecting them to error-prone copying cycles and screening the copies for ones that were even less prone to crosstalk (but still functional).

Another problem Moon faced is that biological circuits, unlike electronic ones, don't have internal clocks that keep the bits moving through the logic gates in lockstep. If signals progress through layers of gates at different speeds, the output of the entire circuit may be wrong, a problem called a timing fault.

Experiments designed to detect such faults in the synthetic circuit showed that they didn't occur, probably because the chaperones for one layer of logic gates degrades before the transcription factors for the next layer are generated, and this forces a kind of rhythm on the circuit.

Hijacking a bacterium's controller
"We're not trying to build a computer out of biological logic gates," Moon says. "You can't build a computer this way. Instead we're trying to make controllers that will allow us to access all the things biological organisms do in simple, programmable ways."

"I see the cell as a system that consists of a sensor, a controller (the logic circuit), and an actuator," he says. "This paper covers work on the controller, but eventually the controller's output will drive an actuator, something that will do work on the cell's surroundings. "

An synthetic bacterium designed by a friend of Moon's at Nanyang Technological University in Singapore senses signaling molecules released by the pathogen Pseudomonas aeruginosa. When the molecules reach a high enough concentration, the bacterium generates a toxin and a protein that causes it to burst, releasing the toxin, and killing nearby P. aeruginosa.

"Silicon cannot do that," Moon says.

.


Related Links
Washington University in St. Louis
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Invisibility could be a key to better electronics
Boston MA (SPX) Oct 15, 2012
A new approach that allows objects to become "invisible" has now been applied to an entirely different area: letting particles "hide" from passing electrons, which could lead to more efficient thermoelectric devices and new kinds of electronics. The concept - developed by MIT graduate student Bolin Liao, former postdoc Mona Zebarjadi (now an assistant professor at Rutgers University), rese ... read more


CHIP TECH
Gene Suppression Can Reduce Cold-induced Sweetening in Potatoes

Nepal culls chickens amid bird flu outbreak

Strengthening a billion-dollar gene in soybeans

Nasdaq OMX, China's Dalian Commodity team up

CHIP TECH
Japan Inc to save Renesas for $2.5 bn: report

A complex logic circuit made from bacterial genes

Invisibility could be a key to better electronics

Organic solar cells with high electric potential for portable electronics

CHIP TECH
Chile deploys Israel's RecceLite system

Quickstep moves on Hercules order

Boeing: Boeing Receives $2 Billion C-17 Aircraft Sustainment Contract

Two flights grounded in China after phone threats: airline

CHIP TECH
Volvo Cars suspends production at Swedish plant

Tycoon offers Chinese cars for Japanese amid row

China's September auto sales fall on Japan row

Japan's Toyota to recall 7.43 mn vehicles globally

CHIP TECH
Mexico takes textile dispute with China to the WTO

London Metal Exchange hopeful of 2012 takeover completion

China IMF boycott 'a sign of things to come': analysts

China exports jump but weakness seen ahead

CHIP TECH
Research shows legume trees can fertilize and stabilize maize fields, generate higher yields

China to up reforestation

SciTechTalk: Amazon's 'razor blade' choice

Study finds nearly 50% of retail firewood infested with insects

CHIP TECH
GMES for Europe

Boeing Releases Updated Geospatial Data Management Tool

First images from e2v imaging sensors on SPOT 6 Earth observation satellite

New Commercial Imaging Spacecraft Progressing at Lockheed Martin as IKONOS Satellite Achieves 13 Years in Operations

CHIP TECH
Queen's develops new environmentally friendly MOF production method

Drawing a line, with carbon nanotubes

Nano-hillocks: Of mountains and craters

Nanoparticles Glow Through Thick Layer of Tissue




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement