Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
A better way to make chemicals?
by Staff Writers
Montreal, Canada (SPX) Dec 05, 2012


The experimental setup at the ESRF in Grenoble (France) with the milling jar containing the white ZIF-8 shown in the front, mounted on a modified industrial mill. Credit: T. Friscic.

Bulk solvents, widely used in the chemical industry, pose a serious threat to human health and the environment. As a result, there is growing interest in avoiding their use by relying on "mechanochemistry" - an energy-efficient alternative that uses high-frequency milling to drive reactions. Because milling involves the intense impact of steel balls in rapidly moving jars, however, the underlying chemistry is difficult to observe.

Now, for the first time, scientists have studied a milling reaction in real time, using highly penetrating X-rays to observe the surprisingly rapid transformations as the mill mixed, ground, and transformed simple ingredients into a complex product.

This research, reported Dec. 2 in Nature Chemistry, promises to advance scientists' understanding of processes central to the pharmaceutical, metallurgical, cement and mineral industries - and could open new opportunities in "green chemistry" and environmentally friendly chemical synthesis.

The international team of researchers was led by Tomislav Friscic of McGill University in collaboration with Ivan Halasz from the University of Zagreb in Croatia, and scientists from the University of Cambridge, the Max-Planck-Institute for Solid State Research in Stuttgart, Germany, and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

While mechanical action can break chemical bonds - for example, in the wear and tear of textile fibers - mechanical force can also be used to synthesize new chemical compounds and materials.

In recent years, ball milling has become increasingly popular in the production of highly complex chemical structures. In such synthesis, steel balls are shaken with the reactants and catalysts in a rapidly vibrating jar.

Chemical transformations take place at the sites of ball collision, where impact causes instant "hot spots" of localized heat and pressure. This is difficult to model and, without access to real time reaction monitoring, mechanochemistry remained poorly understood.

"When we set out to study these reactions, the challenge was to observe the entire reaction without disturbing it, in particular the short-lived intermediates that appear and disappear under continuous impact in less than a minute", says Friscic, an assistant professor in McGill's Department of Chemistry.

The team of scientists chose to study mechanochemical production of the metal-organic framework ZIF-8 from the simplest and non-toxic components.

Materials such as ZIF-8 are rapidly gaining popularity for their ability to capture large amounts of CO2; if manufactured cheaply and sustainably, they could become widely used for carbon capture and storage, catalysis and even hydrogen storage.

"The team came to the ESRF because of our high-energy X-rays capable of penetrating 3 mm thick walls of a rapidly moving reaction jar made of steel, aluminium or plastic.

The X-ray beam must get inside the jar to probe the mechanochemical formation of ZIF-8, and then out again to detect the changes as they happened", says Simon Kimber, a scientist at the European Synchrotron Radiation Facility (ESRF) in Grenoble, who is a member of the team.

This unprecedented methodology enabled the real-time observation of reaction kinetics, reaction intermediates and the development of their respective nanoparticles.

In principle, this technique could be used to study all types of chemical reactions in a ball mill, and optimize them for processing in a range of industries. "That would translate into good news for the environment, for industry - and for consumers," Friscic says.

The researchers in the team were supported by the Herchel Smith Fund, the British Council/DAAD, ESRF Grenoble, NanoDTC, the University of Cambridge, the Ministry of Science, Education and Sports of the Republic of Croatia, McGill University and the FRQNT Centre for Green Chemistry and Catalysis.

.


Related Links
McGill University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
ORNL develops lignin-based thermoplastic conversion process
Oak Ridge TN (SPX) Dec 04, 2012
Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed by Amit Naskar of Oak Ridge National Laboratory. In a cover article published in Green Chemistry, the research team describes a process that ultimately transforms the lignin byproduct into a thermoplastic - a polymer that become ... read more


TECH SPACE
Corn: Many active genes - high yield

A digital portrait for grapes indicates their ripeness

Hot springs in Alps make for luxury Swiss caviar

China, EU protect each others' asparagus and ham

TECH SPACE
Ames Laboratory scientists develop indium-free organic light-emitting diodes

Research discovery could revolutionise semiconductor manufacture

Engineers pave the way towards 3D printing of personal electronics

Antenna-on-a-chip rips the light fantastic

TECH SPACE
China Southern to buy 10 A330-300 aircraft

Four injured in China fighter jet crash: reports

Sandy adds to global air traffic gloom: IATA

India to buy nearly 130 Su-30 fighter jets from Russia

TECH SPACE
Volvo eyes 'no-death' goal in its new cars by 2020

Russia demands answers after 190 km traffic jam

Smith Electric Vehicles to Open Manufacturing Facility in Chicago

North America lags in gas-driven vehicles

TECH SPACE
China island row takes bite out of Japan tourism

Taiwan concerned over China high-tech talent poaching

Activists slam Singapore crackdown on China strikers

Paraguay's diplomatic isolation dissipates

TECH SPACE
Ash dieback poses threat

China demand fuels illegal logging: report

New study shows how climate change could affect entire forest ecosystems

Brazil says Amazon deforestation at record low

TECH SPACE
NASA's Tropical Rainfall Measuring Mission Turns 15

Tracking Pollution from Outer Space

NASA's TRMM Satellite Confirms 2010 Landslides

GOES-R Satellite Program Undergoes Successful Review

TECH SPACE
How 'transparent' is graphene?

A graphene nanotube hybrid

Penn Researchers Make Flexible, Low-voltage Circuits Using Nanocrystals

King's College London finds rainbows on nanoscale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement