GPS News  
A New Generation Of Space Tethers

Gadget and Ralph.
by Staff Writers
Bothell WA (SPX) Apr 18, 2007
The Tethers Unlimited "Multi-Application Survivable Tether" (MAST) experiment will be launched April 17th to study the dynamics of tethered spacecraft formations and survivability of a new multistrand tether technology in low Earth orbit (LEO).

The MAST experiment consists of three GPS receiver-equipped picosatellites stacked for launch into a volume about the size of a loaf of bread. Once in orbit, two of the satellites will separate and deploy a 1,000 meter long version of the company's patented Hoytether structure.

A third picosatellite, dubbed "Gadget," will then crawl slowly along the tether's length, recording and transmitting images of the tether to enable detection of any damage to the tether. The MAST picosatellites were developed by TUI in collaboration with Stanford University.

TUI hopes to prove the survivability of their newest generation of multi- strand tether technology in orbit where it will be exposed to impacts by micrometeoroids, orbital debris, and erosion by atomic oxygen and UV light.

Previous tether experiments have had inconsistent lifetimes in the space environment, with the Naval Research Laboratory's TiPS tether lasting ten years while NASA's SEDS-2 tether lasted just five days. Over a period of several months, data from the MAST experiment will prove whether TUI's Hoytether design can enable tethers to operate reliably for long durations in space.

However, "our first measure of MAST experiment success will be the deployment of the 1 kilometer long tether and the three picosatellites," according to Dr. Robert Hoyt, TUI's CEO and Chairman. TUI has developed the mission within a budget of less than one million dollars, a tiny sum compared to most space missions.

The promise of tethers in space revolves around their potential to provide lower cost alternatives for propulsion and power. Momentum-Exchange tethers can be used to provide space propulsion without consuming propellant by slinging a payload from low earth orbit to a higher orbit.

Conductive space tethers can generate electrical power or produce thrust forces through interactions with the Earth's magnetic field to change orbits, or de-orbiting a spacecraft after its mission to minimize space junk.

Tether systems can also enable groups of satellites to fly in formation for applications like long- baseline interferometry for detection of planets around other suns, or the creation of large synthetic aperture radar systems in space for Earth observation.

In addition, high-voltage electrostatic tethers may enable remediation of the Earth's radiation belts. The data to be collected by the picosatellite crawling up and down the TUI tether will result in key survivability projections for these future tether projects.

Related Links
Tethers Unlimited
All about the technology of space and more
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Tests Demonstrate Functionality Of Next Generation Processor Router For TSAT
Redondo Beach CA (SPX) Apr 18, 2007
Lockheed Martin and Northrop Grumman Transformational Satellite Communications (TSAT) team announced Tuesday that the functionality of its Next Generation Processor Router (NGPR) has been demonstrated in a comprehensive test conducted by the U.S. government.







  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • Driverless Car Goes On Show In London
  • Made In USA Losing Cachet
  • Technique Creates Metal Memory And Could Lead To Vanishing Dents
  • Toyota Anticipates Sharp Increase In Its Hybrid Sales

  • Raytheon To Supply Canada With Enhanced Position Location Reporting System Terminals
  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command
  • Harris Donates OS/COMET For Use In FalconSAT Program

  • Czech MPs Visit US Radar Base Earmarked For Missile Shield
  • Oslo Clash On ABM
  • Raytheon Receives Contracts For Patriot Missile Facility Support
  • Russia Targets Counteroffensive Against ABM

  • Winter Flounder On The Fast Track To Recovery
  • Satellite Images Aid Implementation Of Agricultural Reforms
  • Farmland Across China At Risk From Pollution
  • Anthropologist Finds Earliest Evidence Of Maize Farming In Mexico

  • Wireless Sensors Limit Earthquake Damage
  • Tsunami Emergency In Solomons Declared Over
  • DigitalGlobe And GeoEye Partner With The USGS In Support Of International Charter
  • Philippine Survivors Left Feeling Forgotten

  • A New Generation Of Space Tethers
  • Rolls-Royce Selects Bristol University For Composites Research
  • Tests Demonstrate Functionality Of Next Generation Processor Router For TSAT
  • Sri Lanka Tigers Deny Using Satellite Illegally

  • Boeing Orbital Express Conducts Autonomous Spacecraft-to-Spacecraft Fluid and Component Transfer
  • Top Robotics Teams To Rack And Roll Atlanta Georgia Dome
  • Assistive Robot Adapts To People And New Places
  • Flexible Electronics Could Find Applications As Sensors And Artificial Muscles

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement