GPS News  
STELLAR CHEMISTRY
ALMA reveals inner web of stellar nursery
by Staff Writers
Munich, Germany (SPX) Mar 08, 2018

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth. It combines a mosaic of millimetre wavelength images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the IRAM 30-metre telescope, shown in red, with a more familiar infrared view from the HAWK-I instrument on ESO's Very Large Telescope, shown in blue. The group of bright blue-white stars at the left is the Trapezium Cluster - made up of hot young stars that are only a few million years old. Image courtesy ESO/H. Drass/ALMA (ESO/NAOJ/NRAO)/A. Hacar. For a larger version of this image please go here.

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth. It combines a mosaic of millimetre-wavelength images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the IRAM 30-metre telescope, shown in red, with a more familiar infrared view from the HAWK-I instrument on ESO's Very Large Telescope, shown in blue. The group of bright blue-white stars at the upper-left is the Trapezium Cluster - made up of hot young stars that are only a few million years old.

The wispy, fibre-like structures seen in this large image are long filaments of cold gas, only visible to telescopes working in the millimetre wavelength range. They are invisible at both optical and infrared wavelengths, making ALMA one of the only instruments available for astronomers to study them. This gas gives rise to newborn stars - it gradually collapses under the force of its own gravity until it is sufficiently compressed to form a protostar - the precursor to a star.

The scientists who gathered the data from which this image was created were studying these filaments to learn more about their structure and make-up. They used ALMA to look for signatures of diazenylium gas, which makes up part of these structures. Through doing this study, the team managed to identify a network of 55 filaments.

The Orion Nebula is the nearest region of massive star formation to Earth, and is therefore studied in great detail by astronomers seeking to better understand how stars form and evolve in their first few million years. ESO's telescopes have observed this interesting region multiple times, and you can learn more about previous discoveries here, here, and here.

This image combines a total of 296 separate individual datasets from the ALMA and IRAM telescopes, making it one of the largest high-resolution mosaics of a star formation region produced so far at millimetre wavelengths .

Research paper


Related Links
ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Hubble finds huge system of dusty material enveloping the young star HR 4796A
Greenbelt MD (SPX) Mar 07, 2018
Astronomers have used NASA's Hubble Space Telescope to uncover a vast, complex dust structure, about 150 billion miles across, enveloping the young star HR 4796A. A bright, narrow, inner ring of dust is already known to encircle the star and may have been corralled by the gravitational pull of an unseen giant planet. This newly discovered huge structure around the system may have implications for what this yet-unseen planetary system looks like around the 8-million-year-old star, which is in its formati ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Soil cannot halt climate change

'Doomsday' seed vault gets makeover as Arctic heats up

Cuban cigars: a treasure from Havana to Beijing

The secret to tripling the number of grains in sorghum and perhaps other staple crops

STELLAR CHEMISTRY
Individual quantum dots imaged in 3-D for first time

Memtransistor brings world closer to brain-like computing

Going with the DNA flow: Molecule of life finds new uses in microelectronics

Practical spin wave transistor one step closer

STELLAR CHEMISTRY
MH370 hunt likely to end mid-June: official

Air Force awards contract for jet fighter training programs

Lockheed awarded $155M on two contracts for F-35 work

Boeing receives $73.2M to service F/A-18 jets

STELLAR CHEMISTRY
Infineon, SAIC set up electric car joint venture in China

Japan car giants team up to build hydrogen stations

Profits, doubts in equal measure at Geneva Motor Show

Big switch: Electric cars put China on automobile map

STELLAR CHEMISTRY
China sets 2018 GDP target at 'around 6.5%'

Trump defiant as tariffs spark global anger, stock market plunges

German economy minister wants tougher foreign investment rules

China 'won't sit idly by' if US harms trade

STELLAR CHEMISTRY
Beetles face extinction due to loss of old trees

Tropical forest response to drought depends on age

Honduras energy executive arrested over activist murder

Geological change confirmed as factor behind extensive diversity in tropical rainforests

STELLAR CHEMISTRY
Lockheed Martin supports weather services with 2nd Series R weather satellite

US blasts off another satellite to boost weather forecasts

Study discovers South African wildfires create climate cooling

NASA space laser completes 2,000-mile road trip

STELLAR CHEMISTRY
Nanomaterials: What are the environmental and health risks?

UT Dallas team's microscopic solution may save researchers big time

Researchers invent light-emitting nanoantennas

Nanomushroom sensors: One material, many applications









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.